본문

서브메뉴

Reinforcement Learning: A Computational Framework of Cognition.
Reinforcement Learning: A Computational Framework of Cognition.
Reinforcement Learning: A Computational Framework of Cognition.

상세정보

Material Type  
 학위논문
 
0017160999
Date and Time of Latest Transaction  
20250211151148
ISBN  
9798384447351
DDC  
150
Author  
Rmus, Milena.
Title/Author  
Reinforcement Learning: A Computational Framework of Cognition.
Publish Info  
[S.l.] : University of California, Berkeley., 2024
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Material Info  
146 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Collins, Anne G. E.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2024.
Abstracts/Etc  
요약The thesis investigates applications and extensions of reinforcement learning (RL) algorithms to modeling human cognition, and focuses on development of new tools for fitting cognitive models to behavioral data. The first part of the thesis examines the effect of choice abstraction on recruitment of RL mechanisms. This work challenges the basic RL assumption that action space is always finite and defined, and tests the variability in processes that best describe the data when the appropriate choice features are ambiguous (e.g. abstract). Results indicate that when choices of multiple levels of abstraction are plausible, less abstract choices (e.g. simple motor actions) interfere with more abstract choices (e.g. goal selection). Further cognitive modeling and experimental tests showed that working memory (WM) contribution to more abstract choice process was reduced relative to that of RL, potentially due to the use of WM resources for defining the appropriate choice features in the abstract condition. Second project explored the effect of subgoals, the intermediate learning milestones, on learning in the context of hierarchical reinforcement learning (HRL) framework. In this project we operationalized subgoals in a way that removes the features commonly associated with subgoals (novelty, reward associations, frequency) and sought to test whether subgoals contribute to learning hierarchically organized policies and generalization through a pseudoreinforcing effect independent of these features. The results revealed that participants solved the hierarchical task, with data patterns implying the effect of subgoals on behavior; generalization tests showed that generalization of subgoals, under the constraint of our sub-goal definition, was possible but predicated on explicit recognition of subgoal features. The third project focused on development of new cognitive model-fitting tool leveraging artificial neural networks (ANN). The results demonstrating ANN efficacy in fitting parameters and identifying models with tractable and intractable likelihoods, with comparable (or better) performance relative to standard methods where standard methods were applicable.
Subject Added Entry-Topical Term  
Psychology.
Subject Added Entry-Topical Term  
Neurosciences.
Subject Added Entry-Topical Term  
Cognitive psychology.
Index Term-Uncontrolled  
Artificial neural networks
Index Term-Uncontrolled  
Computational cognitive models
Index Term-Uncontrolled  
Hierarchy
Index Term-Uncontrolled  
Reinforcement learning
Added Entry-Corporate Name  
University of California, Berkeley Psychology
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654717

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160999
■00520250211151148
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384447351
■035    ▼a(MiAaPQ)AAI31235145
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a150
■1001  ▼aRmus,  Milena.
■24510▼aReinforcement  Learning:  A  Computational  Framework  of  Cognition.
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a146  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Collins,  Anne  G.  E.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2024.
■520    ▼aThe  thesis  investigates  applications  and  extensions  of  reinforcement  learning  (RL)  algorithms  to  modeling  human  cognition,  and  focuses  on  development  of  new  tools  for  fitting  cognitive  models  to  behavioral  data.  The  first  part  of  the  thesis  examines  the  effect  of  choice  abstraction  on  recruitment  of  RL  mechanisms.  This  work  challenges  the  basic  RL  assumption  that  action  space  is  always  finite  and  defined,  and  tests  the  variability  in  processes  that  best  describe  the  data  when  the  appropriate  choice  features  are  ambiguous  (e.g.  abstract).  Results  indicate  that  when  choices  of  multiple  levels  of  abstraction  are  plausible,  less  abstract  choices  (e.g.  simple  motor  actions)  interfere  with  more  abstract  choices  (e.g.  goal  selection).  Further  cognitive  modeling  and  experimental  tests  showed  that  working  memory  (WM)  contribution  to  more  abstract  choice  process  was  reduced  relative  to  that  of  RL,  potentially  due  to  the  use  of  WM  resources  for  defining  the  appropriate  choice  features  in  the  abstract  condition.  Second  project  explored  the  effect  of  subgoals,  the  intermediate  learning  milestones,  on  learning  in  the  context  of  hierarchical  reinforcement  learning  (HRL)  framework.  In  this  project  we  operationalized  subgoals  in  a  way  that  removes  the  features  commonly  associated  with  subgoals  (novelty,  reward  associations,  frequency)  and  sought  to  test  whether  subgoals  contribute  to  learning  hierarchically  organized  policies  and  generalization  through  a  pseudoreinforcing  effect  independent  of  these  features.  The  results  revealed  that  participants  solved  the  hierarchical  task,  with  data  patterns  implying  the  effect  of  subgoals  on  behavior;  generalization  tests  showed  that  generalization  of  subgoals,  under  the  constraint  of  our  sub-goal  definition,  was  possible  but  predicated  on  explicit  recognition  of  subgoal  features.  The  third  project  focused  on  development  of  new  cognitive  model-fitting  tool  leveraging  artificial  neural  networks  (ANN).  The  results  demonstrating  ANN  efficacy  in  fitting  parameters  and  identifying  models  with  tractable  and  intractable  likelihoods,  with  comparable  (or  better)  performance  relative  to  standard  methods  where  standard  methods  were  applicable.
■590    ▼aSchool  code:  0028.
■650  4▼aPsychology.
■650  4▼aNeurosciences.
■650  4▼aCognitive  psychology.
■653    ▼aArtificial  neural  networks
■653    ▼aComputational  cognitive  models
■653    ▼aHierarchy
■653    ▼aReinforcement  learning
■690    ▼a0621
■690    ▼a0317
■690    ▼a0633
■71020▼aUniversity  of  California,  Berkeley▼bPsychology.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160999▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0030639 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치