본문

서브메뉴

Learning From Optimal Actions: Theory and Empirical Analysis in Digital Platforms.
Learning From Optimal Actions: Theory and Empirical Analysis in Digital Platforms.

상세정보

자료유형  
 학위논문
Control Number  
0017161017
International Standard Book Number  
9798382743080
Dewey Decimal Classification Number  
338.47
Main Entry-Personal Name  
Resende Fonseca, Yuri.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
178 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Besbes, Omar.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2024.
Summary, Etc.  
요약This thesis focuses on learning from revealed preferences and their implications across operations management problems through an Inverse Problem perspective.For the first part of the thesis, we focus on decentralized platforms facilitating many-to-many matches between two sides of a marketplace. In the absence of direct matching, inefficiency in market outcomes can easily arise. For instance, popular supply agents may garner many units from the demand side, while other supply units may not receive any match. A central question for the platform is how to manage congestion and improve market outcomes. In Chapter One, we study the impact of a detail-free lever: the disclosure of information to agents on current competition levels. How large are the effects of this lever, and how do they affect overall market outcomes? We answer this question empirically. We partner with the largest service marketplace in Latin America, which sells non-exclusive labor market leads to workers. The key innovation in our approach is the proposal of a structural model that allows agents (workers) to respond to competitors through beliefs about competition at the lead level, which in turn implies an equilibrium at the platform level under the assumption of rational expectations. In this problem, we observe agents' best responses (actions), and from that, we need to infer their structural parameters. Identification follows from an exogenous intervention that changes agents' contextual information and the platform equilibrium. We then conduct counterfactual analyses to study the impact of signaling competition on workers' lead purchasing decisions, the platform's revenue, and the expected number of matches. We find that signaling competition is a powerful lever for the platform to reduce congestion, redirect demand, and ultimately improve the expected number of matches for the markets we analyze.For the second part of the thesis, we discuss both parametric and modelling approaches in Inverse Problems. In Chapter Two, we focus on Inverse Optimization Problems in a single-agent setting. Specifically, we study offline and online contextual optimization with feedback information, where instead of observing the loss, we observe, after-the-fact, the optimal action an oracle with full knowledge of the objective function would have taken. We aim to minimize regret, which is defined as the difference between our losses and the ones incurred by an all-knowing oracle. In the offline setting, the decision-maker has information available from past periods and needs to make one decision, while in the online setting, the decision-maker optimizes decisions dynamically over time based on a new set of feasible actions and contextual functions in each period. For the offline setting, we characterize the optimal minimax policy, establishing the performance that can be achieved as a function of the underlying geometry of the information induced by the data. In the online setting, we leverage this geometric characterization to optimize the cumulative regret. We develop an algorithm that yields the first regret bound for this problem, which is logarithmic in the time horizon. Furthermore, we show via simulation that our proposed algorithms outperform previous methods from the literature.Finally, in Chapter Three, we consider data-driven methods for general Inverse Problem formulations under a statistical framework (Statistical Inverse Problem-SIP) and demonstrate how Stochastic Gradient Descent (SGD) algorithms can be used to solve linear SIP. We provide consistency and finite sample bounds for the excess risk. We exemplify the algorithm in the Functional Linear Regression setting with an empirical application in predicting illegal activity from bitcoin wallets. We also discuss additional applications and extensions.
Index Term-Uncontrolled  
Digital platforms
Index Term-Uncontrolled  
Inverse optimization
Index Term-Uncontrolled  
Revealed preferences
Index Term-Uncontrolled  
Stochastic Gradient Descent
Index Term-Uncontrolled  
Statistical Inverse Problem
Added Entry-Corporate Name  
Columbia University Business
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654711

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161017
■00520250211151150
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382743080
■035    ▼a(MiAaPQ)AAI31235409
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a338.47
■1001  ▼aResende  Fonseca,  Yuri.
■24510▼aLearning  From  Optimal  Actions:  Theory  and  Empirical  Analysis  in  Digital  Platforms.
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a178  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Besbes,  Omar.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2024.
■520    ▼aThis  thesis  focuses  on  learning  from  revealed  preferences  and  their  implications  across  operations  management  problems  through  an  Inverse  Problem  perspective.For  the  first  part  of  the  thesis,  we  focus  on  decentralized  platforms  facilitating  many-to-many  matches  between  two  sides  of  a  marketplace.  In  the  absence  of  direct  matching,  inefficiency  in  market  outcomes  can  easily  arise.  For  instance,  popular  supply  agents  may  garner  many  units  from  the  demand  side,  while  other  supply  units  may  not  receive  any  match.  A  central  question  for  the  platform  is  how  to  manage  congestion  and  improve  market  outcomes.  In  Chapter  One,  we  study  the  impact  of  a  detail-free  lever:  the  disclosure  of  information  to  agents  on  current  competition  levels.  How  large  are  the  effects  of  this  lever,  and  how  do  they  affect  overall  market  outcomes?  We  answer  this  question  empirically.  We  partner  with  the  largest  service  marketplace  in  Latin  America,  which  sells  non-exclusive  labor  market  leads  to  workers.  The  key  innovation  in  our  approach  is  the  proposal  of  a  structural  model  that  allows  agents  (workers)  to  respond  to  competitors  through  beliefs  about  competition  at  the  lead  level,  which  in  turn  implies  an  equilibrium  at  the  platform  level  under  the  assumption  of  rational  expectations.  In  this  problem,  we  observe  agents'  best  responses  (actions),  and  from  that,  we  need  to  infer  their  structural  parameters.  Identification  follows  from  an  exogenous  intervention  that  changes  agents'  contextual  information  and  the  platform  equilibrium.  We  then  conduct  counterfactual  analyses  to  study  the  impact  of  signaling  competition  on  workers'  lead  purchasing  decisions,  the  platform's  revenue,  and  the  expected  number  of  matches.  We  find  that  signaling  competition  is  a  powerful  lever  for  the  platform  to  reduce  congestion,  redirect  demand,  and  ultimately  improve  the  expected  number  of  matches  for  the  markets  we  analyze.For  the  second  part  of  the  thesis,  we  discuss  both  parametric  and  modelling  approaches  in  Inverse  Problems.  In  Chapter  Two,  we  focus  on  Inverse  Optimization  Problems  in  a  single-agent  setting.  Specifically,  we  study  offline  and  online  contextual  optimization  with  feedback  information,  where  instead  of  observing  the  loss,  we  observe,  after-the-fact,  the  optimal  action  an  oracle  with  full  knowledge  of  the  objective  function  would  have  taken.  We  aim  to  minimize  regret,  which  is  defined  as  the  difference  between  our  losses  and  the  ones  incurred  by  an  all-knowing  oracle.  In  the  offline  setting,  the  decision-maker  has  information  available  from  past  periods  and  needs  to  make  one  decision,  while  in  the  online  setting,  the  decision-maker  optimizes  decisions  dynamically  over  time  based  on  a  new  set  of  feasible  actions  and  contextual  functions  in  each  period.  For  the  offline  setting,  we  characterize  the  optimal  minimax  policy,  establishing  the  performance  that  can  be  achieved  as  a  function  of  the  underlying  geometry  of  the  information  induced  by  the  data.  In  the  online  setting,  we  leverage  this  geometric  characterization  to  optimize  the  cumulative  regret.  We  develop  an  algorithm  that  yields  the  first  regret  bound  for  this  problem,  which  is  logarithmic  in  the  time  horizon.  Furthermore,  we  show  via  simulation  that  our  proposed  algorithms  outperform  previous  methods  from  the  literature.Finally,  in  Chapter  Three,  we  consider  data-driven  methods  for  general  Inverse  Problem  formulations  under  a  statistical  framework  (Statistical  Inverse  Problem-SIP)  and  demonstrate  how  Stochastic  Gradient  Descent  (SGD)  algorithms  can  be  used  to  solve  linear  SIP.  We  provide  consistency  and  finite  sample  bounds  for  the  excess  risk.  We  exemplify  the  algorithm  in  the  Functional  Linear  Regression  setting  with  an  empirical  application  in  predicting  illegal  activity  from  bitcoin  wallets.  We  also  discuss  additional  applications  and  extensions.
■590    ▼aSchool  code:  0054.
■653    ▼aDigital  platforms
■653    ▼aInverse  optimization
■653    ▼aRevealed  preferences
■653    ▼aStochastic  Gradient  Descent
■653    ▼aStatistical  Inverse  Problem
■690    ▼a0796
■690    ▼a0454
■690    ▼a0501
■71020▼aColumbia  University▼bBusiness.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161017▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0030633 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치