본문

서브메뉴

Factored Regression Specification for Composites With Categorical Item-Level Missing Data.
Factored Regression Specification for Composites With Categorical Item-Level Missing Data.

상세정보

자료유형  
 학위논문
Control Number  
0017162477
International Standard Book Number  
9798382838557
Dewey Decimal Classification Number  
151
Main Entry-Personal Name  
Alacam, Egamaria.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Los Angeles., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
107 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Du, Han.
Dissertation Note  
Thesis (Ph.D.)--University of California, Los Angeles, 2024.
Summary, Etc.  
요약Composites are widely used in the behavioral and social sciences where multiple items measure a construct of interest. Researchers often use composites to measure abstract concepts such as depression and anxiety. However, missing items are prevalent in the field, either due to participants skipping items or a planned missingness design. A researcher can choose either an item-level missing data treatment or a scale-level missing data treatment, but studies have demonstrated that item-level missing data treatment is superior because it maximizes power and precision. Item-level missing data handling though, can be challenging because missing data models can become very complex especially when there are many total items and small sample sizes. Recently in the literature, there have been many studies focused on advancing factored regression specifications and a recently published paper applied this to composite scores. The method was very favorable compared to other gold standard methods, but simulation studies had limited scope on categorical items. This dissertation extends the factored regression specification to examine how it performs under various scenarios categorical item distribution types and response format options. Overall, the simulation results suggest that the proposed method can be very effective compared to the gold standard methods under most conditions, especially when the number of items is very large, and the sample size is relatively small. A real data analysis illustrates the application of the proposed methods and the other gold standard methods. 
Subject Added Entry-Topical Term  
Quantitative psychology.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Psychology.
Subject Added Entry-Topical Term  
Epidemiology.
Index Term-Uncontrolled  
Composites
Index Term-Uncontrolled  
Factored regression specification
Index Term-Uncontrolled  
Missing data
Index Term-Uncontrolled  
Gold standard methods
Index Term-Uncontrolled  
Depression
Added Entry-Corporate Name  
University of California, Los Angeles Psychology 0780
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654668

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162477
■00520250211152017
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382838557
■035    ▼a(MiAaPQ)AAI31331845
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a151
■1001  ▼aAlacam,  Egamaria.
■24510▼aFactored  Regression  Specification  for  Composites  With  Categorical  Item-Level  Missing  Data.
■260    ▼a[S.l.]▼bUniversity  of  California,  Los  Angeles.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a107  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Du,  Han.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Los  Angeles,  2024.
■520    ▼aComposites  are  widely  used  in  the  behavioral  and  social  sciences  where  multiple  items  measure  a  construct  of  interest.  Researchers  often  use  composites  to  measure  abstract  concepts  such  as  depression  and  anxiety.  However,  missing  items  are  prevalent  in  the  field,  either  due  to  participants  skipping  items  or  a  planned  missingness  design.  A  researcher  can  choose  either  an  item-level  missing  data  treatment  or  a  scale-level  missing  data  treatment,  but  studies  have  demonstrated  that  item-level  missing  data  treatment  is  superior  because  it  maximizes  power  and  precision.  Item-level  missing  data  handling  though,  can  be  challenging  because  missing  data  models  can  become  very  complex  especially  when  there  are  many  total  items  and  small  sample  sizes.  Recently  in  the  literature,  there  have  been  many  studies  focused  on  advancing  factored regression  specifications  and  a  recently  published  paper  applied  this  to  composite  scores.  The  method  was  very  favorable  compared  to  other  gold  standard  methods,  but  simulation  studies  had  limited  scope  on  categorical  items.  This  dissertation  extends  the  factored  regression  specification  to  examine  how  it  performs  under  various  scenarios  categorical  item  distribution  types  and  response  format  options.  Overall,  the  simulation  results  suggest  that  the  proposed  method  can  be  very  effective  compared  to  the  gold  standard  methods  under  most  conditions,  especially  when  the  number  of  items  is  very  large,  and  the  sample  size  is  relatively  small.  A  real  data  analysis  illustrates  the  application  of  the  proposed  methods  and  the  other  gold  standard  methods. 
■590    ▼aSchool  code:  0031.
■650  4▼aQuantitative  psychology.
■650  4▼aStatistics.
■650  4▼aPsychology.
■650  4▼aEpidemiology.
■653    ▼aComposites
■653    ▼aFactored  regression  specification
■653    ▼aMissing  data
■653    ▼aGold  standard  methods
■653    ▼aDepression
■690    ▼a0632
■690    ▼a0621
■690    ▼a0766
■690    ▼a0463
■71020▼aUniversity  of  California,  Los  Angeles▼bPsychology  0780.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0031
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162477▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0030590 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치