본문

서브메뉴

On the Optimization of the Helically Symmetric Experiment Stellarator for Reduced Trapped-Electron-Mode Turbulence.
On the Optimization of the Helically Symmetric Experiment Stellarator for Reduced Trapped-Electron-Mode Turbulence.

상세정보

자료유형  
 학위논문
Control Number  
0017163886
International Standard Book Number  
9798383686553
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Gerard, Michael J.
Publication, Distribution, etc. (Imprint  
[S.l.] : The University of Wisconsin - Madison., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
207 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Geiger, Benedikt.
Dissertation Note  
Thesis (Ph.D.)--The University of Wisconsin - Madison, 2024.
Summary, Etc.  
요약Magnetic confinement fusion (MCF) endeavors to provide a carbon-free energy source that can meet the growing worldwide energy demands. One of the major challenges in MCF is the turbulent transport of heat and particles across the confining magnetic field, which limits reactor performance. The stellarator approach to MCF may provide an elegant solution to this challenge by allowing 3D magnetic fields, which, when optimized, may confine a plasma better than other MCF devices.In this thesis, a novel optimization approach is used in which a database of over 106 ideal magnetohydrodynamic equilibria is generated. These equilibria are produced by computationally varying individual coil currents in the Helically Symmetric eXperiment (HSX) stellarator. The database is then used to investigate the operational space surrounding the standard quasi-helically symmetric (QHS) configuration for improved plasma confinement. A set of volume-averaged metrics is used to quickly assess entries in this database. It is found that the favorable neoclassical properties of the experiment can be preserved while modifying the magnetic field geometry. Moreover, using the gyrokinetic code GENE, the growth rate of the trapped-electron mode (TEM), which is the dominant microinstability driving turbulence in HSX, is shown to be reduced by increasing flux-surface elongation relative to the QHS configuration.The observed trends are leveraged to inform an expanded search in the configuration space that includes configurations with spoiled quasi-helical symmetry. It is found that increased elongation reduces growth rates only when quasi-helical symmetry is preserved. GENE-predicted trends are compared against the TEM available energy EA, a possible TEM optimization metric. It is found that lower values of EA and improved quasi-helical symmetry correlate with reduced growth rates but that neither predict the growth rate reduction observed with increasing elongation. Using a newly derived TEM resonance operator, these trends are analyzed to provide insights into the physical mechanism of the stabilization. For elongation, stabilization is attributed to geometric effects that reduce the destabilizing particle drifts across the magnetic field. The TEM resonance in the maximally resonant trapping well is shown to increase as the quasi-helical symmetry is broken, and breaking quasi-helical symmetry increases the prevalence of highly resonant trapping wells. While these results demonstrate the limitations of using any single metric as a linear TEM proxy, quasi-helical symmetry and plasma elongation are highly effective metrics for reducing TEM growth rates in helical equilibria.Nonlinear simulations are performed to compare the QHS configuration against a high-elongation quasi-helically symmetric (HE-QHS) configuration. It is found that despite the HE-QHS configuration having lower TEM growth rates and reduced EA, its heat flux is higher or comparable to QHS, depending on the background density gradient. Moreover, quasilinear (QL) estimates of the heat flux are shown to predict erroneous trends between geometries. The discrepancy between nonlinear simulations and QL estimates is due, in part, to the self-organization of the turbulent plasma into large-scale quasi-coherent density and potential fluctuations, which are driven by density-gradient-driven tearing-parity TEMs that may be nonlinearly coupled through the zonal flow. The physical mechanism of this process is investigated, and prospects for mitigating the impact of these quasi-coherent fluctuations by modifying the flux-surface geometry in the experiment are discussed.The results in this thesis provide a better understanding of TEM destabilization and the resulting turbulence in low-shear quasi-helically symmetric stellarator geometries. This will help inform new metrics and tools to design next-step fusion power plants.
Subject Added Entry-Topical Term  
Plasma physics.
Subject Added Entry-Topical Term  
Nuclear engineering.
Subject Added Entry-Topical Term  
Physics.
Index Term-Uncontrolled  
Fusion
Index Term-Uncontrolled  
Magnetic confinement
Index Term-Uncontrolled  
Microinstability
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Stellarator
Index Term-Uncontrolled  
Turbulence
Added Entry-Corporate Name  
The University of Wisconsin - Madison Nuclear Engineering & Engineering Physics
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654654

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163886
■00520250211152805
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383686553
■035    ▼a(MiAaPQ)AAI31557104
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aGerard,  Michael  J.
■24510▼aOn  the  Optimization  of  the  Helically  Symmetric  Experiment  Stellarator  for  Reduced  Trapped-Electron-Mode  Turbulence.
■260    ▼a[S.l.]▼bThe  University  of  Wisconsin  -  Madison.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a207  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Geiger,  Benedikt.
■5021  ▼aThesis  (Ph.D.)--The  University  of  Wisconsin  -  Madison,  2024.
■520    ▼aMagnetic  confinement  fusion  (MCF)  endeavors  to  provide  a  carbon-free  energy  source  that  can  meet  the  growing  worldwide  energy  demands.  One  of  the  major  challenges  in  MCF  is  the  turbulent  transport  of  heat  and  particles  across  the  confining  magnetic  field,  which  limits  reactor  performance.  The  stellarator  approach  to  MCF  may  provide  an  elegant  solution  to  this  challenge  by  allowing  3D  magnetic  fields,  which,  when  optimized,  may  confine  a  plasma  better  than  other  MCF  devices.In  this  thesis,  a  novel  optimization  approach  is  used  in  which  a  database  of  over  106  ideal  magnetohydrodynamic  equilibria  is  generated.  These  equilibria  are  produced  by  computationally  varying  individual  coil  currents  in  the  Helically  Symmetric  eXperiment  (HSX)  stellarator.  The  database  is  then  used  to  investigate  the  operational  space  surrounding  the  standard  quasi-helically  symmetric  (QHS)  configuration  for  improved  plasma  confinement.  A  set  of  volume-averaged  metrics  is  used  to  quickly  assess  entries  in  this  database.  It  is  found  that  the  favorable  neoclassical  properties  of  the  experiment  can  be  preserved  while  modifying  the  magnetic  field  geometry.  Moreover,  using  the  gyrokinetic  code  GENE,  the  growth  rate  of  the  trapped-electron  mode  (TEM),  which  is  the  dominant  microinstability  driving  turbulence  in  HSX,  is  shown  to  be  reduced  by  increasing  flux-surface  elongation  relative  to  the  QHS  configuration.The  observed  trends  are  leveraged  to  inform  an  expanded  search  in  the  configuration  space  that  includes  configurations  with  spoiled  quasi-helical  symmetry.  It  is  found  that  increased  elongation  reduces  growth  rates  only  when  quasi-helical  symmetry  is  preserved.  GENE-predicted  trends  are  compared  against  the  TEM  available  energy  EA,  a  possible  TEM  optimization  metric.  It  is  found  that  lower  values  of  EA  and  improved  quasi-helical  symmetry  correlate  with  reduced  growth  rates  but  that  neither  predict  the  growth  rate  reduction  observed  with  increasing  elongation.  Using  a  newly  derived  TEM  resonance  operator,  these  trends  are  analyzed  to  provide  insights  into  the  physical  mechanism  of  the  stabilization.  For  elongation,  stabilization  is  attributed  to  geometric  effects  that  reduce  the  destabilizing  particle  drifts  across  the  magnetic  field.  The  TEM  resonance  in  the  maximally  resonant  trapping  well  is  shown  to  increase  as  the  quasi-helical  symmetry  is  broken,  and  breaking  quasi-helical  symmetry  increases  the  prevalence  of  highly  resonant  trapping  wells.  While  these  results  demonstrate  the  limitations  of  using  any  single  metric  as  a  linear  TEM  proxy,  quasi-helical  symmetry  and  plasma  elongation  are  highly  effective  metrics  for  reducing  TEM  growth  rates  in  helical  equilibria.Nonlinear  simulations  are  performed  to  compare  the  QHS  configuration  against  a  high-elongation  quasi-helically  symmetric  (HE-QHS)  configuration.  It  is  found  that  despite  the  HE-QHS  configuration  having  lower  TEM  growth  rates  and  reduced  EA,  its  heat  flux  is  higher  or  comparable  to  QHS,  depending  on  the  background  density  gradient.  Moreover,  quasilinear  (QL)  estimates  of  the  heat  flux  are  shown  to  predict  erroneous  trends  between  geometries.  The  discrepancy  between  nonlinear  simulations  and  QL  estimates  is  due,  in  part,  to  the  self-organization  of  the  turbulent  plasma  into  large-scale  quasi-coherent  density  and  potential  fluctuations,  which  are  driven  by  density-gradient-driven  tearing-parity  TEMs  that  may  be  nonlinearly  coupled  through  the  zonal  flow.  The  physical  mechanism  of  this  process  is  investigated,  and  prospects  for  mitigating  the  impact  of  these  quasi-coherent  fluctuations  by  modifying  the  flux-surface  geometry  in  the  experiment  are  discussed.The  results  in  this  thesis  provide  a  better  understanding  of  TEM  destabilization  and  the  resulting  turbulence  in  low-shear  quasi-helically  symmetric  stellarator  geometries.  This  will  help  inform  new  metrics  and  tools  to  design  next-step  fusion  power  plants.
■590    ▼aSchool  code:  0262.
■650  4▼aPlasma  physics.
■650  4▼aNuclear  engineering.
■650  4▼aPhysics.
■653    ▼aFusion
■653    ▼aMagnetic  confinement
■653    ▼aMicroinstability
■653    ▼aOptimization
■653    ▼aStellarator
■653    ▼aTurbulence
■690    ▼a0759
■690    ▼a0552
■690    ▼a0605
■71020▼aThe  University  of  Wisconsin  -  Madison▼bNuclear  Engineering  &  Engineering  Physics.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0262
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163886▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0030576 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치