본문

서브메뉴

Variational Inference in High-dimensional Bayesian Regression Models.
Variational Inference in High-dimensional Bayesian Regression Models.

상세정보

자료유형  
 학위논문
Control Number  
0017160359
International Standard Book Number  
9798382781877
Dewey Decimal Classification Number  
310
Main Entry-Personal Name  
Qiu, Jiaze.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
184 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Sen, Subhabrata.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2024.
Summary, Etc.  
요약In modern applications of Bayesian Statistics, the posterior distribution is typically high-dimensional and analytically intractable. Variational Inference (VI) has emerged as an attractive option to approximate these intractable distributions, facilitating fast, parallel computations. The simplest version of VI is the Naive Mean-field approximation (NMF), where the distribution of interest is approximated by a product distribution. In recent years, another strategy rooted in statistical physics, the Thouless-Anderson-Palmer (TAP) formulation, started to garner increasing attention from theorists and practitioners alike. However, despite the rapidly growing popularity of variational approximations in Statistics and Machine Learning, the corresponding theoretical guarantees for these approximations remain largely unexplored. This dissertation addresses this challenge through three main contributions: TAP Approximation in Bayesian Linear Regression: In Chapter 1, a variational representation for the log-normalizing constant of the posterior distribution in Bayesian linear regression is derived in the proportional asymptotic regime, assuming a uniform spherical prior and i.i.d. Gaussian designs. Performance of NMF in Linear Regression: Chapter 2 investigates the NMF approximation in linear regression under proportional asymptotics. It confirms the inaccuracy of NMF for approximating the log-normalizing constant and supports empirical observations of NMF being overconfident. NMF in Generalized Linear Models (GLMs): Chapter 3 identifies conditions under which the NMF approximation is valid in high-dimensional GLMs. Algorithmic insights and probabilistic properties of the high-dimensional posteriors were also investigated.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Statistical physics.
Index Term-Uncontrolled  
Variational inference
Index Term-Uncontrolled  
Thouless-Anderson-Palmer
Index Term-Uncontrolled  
Linear regression
Index Term-Uncontrolled  
Bayesian models
Index Term-Uncontrolled  
Gaussian designs
Added Entry-Corporate Name  
Harvard University Statistics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654600

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160359
■00520250211151004
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382781877
■035    ▼a(MiAaPQ)AAI30994432
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a310
■1001  ▼aQiu,  Jiaze.▼0(orcid)0000-0003-3895-1859
■24510▼aVariational  Inference  in  High-dimensional  Bayesian  Regression  Models.
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a184  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Sen,  Subhabrata.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2024.
■520    ▼aIn  modern  applications  of  Bayesian  Statistics,  the  posterior  distribution  is  typically  high-dimensional  and  analytically  intractable.  Variational  Inference  (VI)  has  emerged  as  an  attractive  option  to  approximate  these  intractable  distributions,  facilitating  fast,  parallel  computations.  The  simplest  version  of  VI  is  the  Naive  Mean-field  approximation  (NMF),  where  the  distribution  of  interest  is  approximated  by  a  product  distribution.  In  recent  years,  another  strategy  rooted  in  statistical  physics,  the  Thouless-Anderson-Palmer  (TAP)  formulation,  started  to  garner  increasing  attention  from  theorists  and  practitioners  alike.  However,  despite  the  rapidly  growing  popularity  of  variational  approximations  in  Statistics  and  Machine  Learning,  the  corresponding  theoretical  guarantees  for  these  approximations  remain  largely  unexplored.  This  dissertation  addresses  this  challenge  through  three  main  contributions:  TAP  Approximation  in  Bayesian  Linear  Regression:  In  Chapter  1,  a  variational  representation  for  the  log-normalizing  constant  of  the  posterior  distribution  in  Bayesian  linear  regression  is  derived  in  the  proportional  asymptotic  regime,  assuming  a  uniform  spherical  prior  and  i.i.d.  Gaussian  designs.  Performance  of  NMF  in  Linear  Regression:  Chapter  2  investigates  the  NMF  approximation  in  linear  regression  under  proportional  asymptotics.  It  confirms  the  inaccuracy  of  NMF  for  approximating  the  log-normalizing  constant  and  supports  empirical  observations  of  NMF  being  overconfident.  NMF  in  Generalized  Linear  Models  (GLMs):  Chapter  3  identifies  conditions  under  which  the  NMF  approximation  is  valid  in  high-dimensional  GLMs.  Algorithmic  insights  and  probabilistic  properties  of  the  high-dimensional  posteriors  were  also  investigated.
■590    ▼aSchool  code:  0084.
■650  4▼aStatistics.
■650  4▼aApplied  mathematics.
■650  4▼aStatistical  physics.
■653    ▼aVariational  inference
■653    ▼aThouless-Anderson-Palmer
■653    ▼aLinear  regression
■653    ▼aBayesian  models
■653    ▼aGaussian  designs
■690    ▼a0463
■690    ▼a0364
■690    ▼a0217
■71020▼aHarvard  University▼bStatistics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160359▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0030522 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치