본문

서브메뉴

Mechanosensing Uses the Intricate Internal Organization of Bacteria to Regulate Surface Behaviors.
Mechanosensing Uses the Intricate Internal Organization of Bacteria to Regulate Surface Behaviors.

상세정보

자료유형  
 학위논문
Control Number  
0017160377
International Standard Book Number  
9798381971866
Dewey Decimal Classification Number  
576
Main Entry-Personal Name  
Patino, Ramiro.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, San Francisco., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
312 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-09, Section: B.
General Note  
Includes supplementary digital materials.
General Note  
Advisor: Gross, Carol.
Dissertation Note  
Thesis (Ph.D.)--University of California, San Francisco, 2024.
Summary, Etc.  
요약Bacteria use conserved signal transduction pathways, called sensory systems, to sense environmental stimuli. Most of our understanding of sensory systems in bacteria, however, comes from the chemotaxis system of Escherichia coli, which senses chemical gradients to control the direction of flagellar-based motility (chemosensing). Importantly, bacteria can also sense mechanical stimuli to actively shape their physiology. An in-depth mechanistic understanding of mechanosensory systems, when compared to their chemosensory counterparts, is however lacking. This dissertation presents work towards understanding mechanosensing in the important opportunistic human pathogen Pseudomonas aeruginosa. This Gram-negative bacterium uses Type IV pili (TFP), retractile polarly localized appendages, to sense mechanical forces generated during surface contact at one cell pole. We and others have demonstrated that spatially resolved mechanical stimuli transmitted by TFP activates the Pil-Chp mechanosensory system. Upon surface contact, TFP transmits mechanical stimuli to the Pil-Chp receptor, PilJ, thereby altering the autophosphorylation state of ChpA and thus the phosphorylation of PilG and PilH, the antagonistic Pil-Chp response regulators.PilG and PilH inversely control two outputs of the Pil-Chp system in P. aeruginosa: cAMP production and twitching motility. Sensing of surface contact by the Pil-Chp system activates the membrane bound CyaB adenylate cyclase, which catalyzes the production of the second messenger, cyclic adenosine monophosphate (cAMP). cAMP binds to the Vfr transcription factor, leading to altered transcription of 200 genes involved in acute virulence as well as selected TFP regulatory proteins. Signal processing through PilG and PilH is critical for surface-dependent cAMP production. PilG promotes cAMP production and upregulation of the surface dependent transcriptional program while PilH has the opposite effect. The Pil-Chp mechanosensory system is required for twitching motility, partially independently of cAMP levels. In Chapter 2, we demonstrate that P. aeruginosa actively directs twitching in the direction of mechanical input from TFP, in a process called mechanotaxis. The Pil-Chp system controls the balance of forward and reverse twitching motility of single cells in response to the mechanical inputs. We show that the Pil-Chp response regulators PilG and PilH control the polarization of the TFP extension motor PilB. PilG localizes to both poles, but shows greater accumulation at the leading pole, where it stimulates polarization favoring forward migration. In contrast, PilH, is primarily cytoplasmic, thereby globally antagonizing PilG. Subcellular segregation of PilG and PilH efficiently orchestrates their antagonistic functions, ultimately enabling rapid reversals upon perturbations. The distinct localization of response regulators establishes a signaling landscape known as local-excitation, global-inhibition in higher order organisms.In Chapter 3, we demonstrate that PilG and PilH enable dynamic cell polarization by coupling their antagonistic functions on TFP extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not inherently required for twitching reversals, upon phosphorylation, PilH becomes activated and breaks the local positive feedback established by PilG so that forward-twitching cells can reverse. To spatially resolve mechanical signals, the Pil-Chp system thus locally transduces signals with a main output response regulator, PilG. To respond to signal changes, Chp uses its second regulator, PilH, to break the local feedback.In Chapter 4, we report the mechanism of sensory adaptation in the Pil-Chp mechanosensory system. Bacterial sensory adaptation has primarily been studied in flagellar-mediated chemotaxis, where reversible methylation of sensory receptors by a methyltransferase and a methylesterase "tune" their sensitivity of signaling. The Pil-Chp system encodes the PilK methyltransferase, predicted to methylate PilJ, and the ChpB methylesterase, predicted to demethylate PilJ; however, whether sensory adaptation occurs in response to surface contact remained underexplored. Using biochemistry, genetics, and cell biology, we discovered that PilK and ChpB are segregated to opposing cell poles as P. aeruginosa explore surfaces. By coordinating the localization of both enzymes, we found that the Pil-Chp response regulators influence local PilJ methylation in vivo. We propose a model in which spatially resolved mechanical inputs transmitted by TFP not only alter PilG and PilH signaling mechanisms but locally controls PilJ methylation to modulate twitching motility reversal rates and surface-dependent cAMP production. Despite decades of chemosensory adaptation studies, our work has uncovered an unrecognized mechanism that bacteria use to achieve adaptation to mechanical sensory stimuli.Acinetobacter species are opportunistic pathogens that are ubiquitous throughout the environment and are emerging as a public health threat around the world due to their widespread multidrug resistance. Intriguingly, many Acinetobacter strains encode homologs of the P. aeruginosa Pil-Chp mechanosensory system. In Chapter 5, we demonstrate that A. nosocomialis strain M2, a pathogenic member of the Acinetobacter calcoaceticus-baumannii complex, has a robust surface-dependent transcriptional response. We speculate that the homologous Pil-Chp mechanosensory system is responsible for the surface-dependent transcriptional response that we report in this dissertation.Overall, this dissertation demonstrates that mechanosensing through the Pil-Chp system takes advantage of the intricate internal organization of bacteria to sense spatially resolved mechanical information. As medically Acinetobacter species exhibit a surface transcriptional response, defining the mechanosensing mechanism of Acinetobacter species represents an exciting area of investigation. Understanding the mechanisms of bacterial mechanosensing may lead to the generation of desperately needed therapeutics to treat multi-drug resistant infections, such as the ones typically caused by P. aeruginosa and medically relevant Acinetobacter species. 
Subject Added Entry-Topical Term  
Microbiology.
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Molecular biology.
Index Term-Uncontrolled  
Acinetobacter species
Index Term-Uncontrolled  
Mechanosensing
Index Term-Uncontrolled  
Pseudomonas aeruginosa
Index Term-Uncontrolled  
Sensory adaptation
Index Term-Uncontrolled  
Sensory systems
Index Term-Uncontrolled  
Signal transduction
Added Entry-Corporate Name  
University of California, San Francisco Biomedical Sciences
Host Item Entry  
Dissertations Abstracts International. 85-09B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654403

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160377
■00520250211151007
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798381971866
■035    ▼a(MiAaPQ)AAI30995001
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a576
■1001  ▼aPatino,  Ramiro.▼0(orcid)0009-0008-3512-6726
■24510▼aMechanosensing  Uses  the  Intricate  Internal  Organization  of  Bacteria  to  Regulate  Surface  Behaviors.
■260    ▼a[S.l.]▼bUniversity  of  California,  San  Francisco.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a312  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-09,  Section:  B.
■500    ▼aIncludes  supplementary  digital  materials.
■500    ▼aAdvisor:  Gross,  Carol.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  San  Francisco,  2024.
■520    ▼aBacteria  use  conserved  signal  transduction  pathways,  called  sensory  systems,  to  sense  environmental  stimuli.  Most  of  our  understanding  of  sensory  systems  in  bacteria,  however,  comes  from  the  chemotaxis  system  of  Escherichia  coli,  which  senses  chemical  gradients  to  control  the  direction  of  flagellar-based  motility  (chemosensing).  Importantly,  bacteria  can  also  sense  mechanical  stimuli  to  actively  shape  their  physiology.  An  in-depth  mechanistic  understanding  of  mechanosensory  systems,  when  compared  to  their  chemosensory  counterparts,  is  however  lacking.  This  dissertation  presents  work  towards  understanding  mechanosensing  in  the  important  opportunistic  human  pathogen  Pseudomonas  aeruginosa.  This  Gram-negative  bacterium  uses  Type  IV  pili  (TFP),  retractile  polarly  localized  appendages,  to  sense  mechanical  forces  generated  during  surface  contact  at  one  cell  pole.  We  and  others  have  demonstrated  that  spatially  resolved  mechanical  stimuli  transmitted  by  TFP  activates  the  Pil-Chp  mechanosensory  system.  Upon  surface  contact,  TFP  transmits  mechanical  stimuli  to  the  Pil-Chp  receptor,  PilJ,  thereby  altering  the  autophosphorylation  state  of  ChpA  and  thus  the  phosphorylation  of  PilG  and  PilH,  the  antagonistic  Pil-Chp  response  regulators.PilG  and  PilH  inversely  control  two  outputs  of  the  Pil-Chp  system  in  P.  aeruginosa:  cAMP  production  and  twitching  motility.  Sensing  of  surface  contact  by  the  Pil-Chp  system  activates  the  membrane  bound  CyaB  adenylate  cyclase,  which  catalyzes  the  production  of  the  second  messenger,  cyclic  adenosine  monophosphate  (cAMP).  cAMP  binds  to  the  Vfr  transcription  factor,  leading  to  altered  transcription  of  200  genes  involved  in  acute  virulence  as  well  as  selected  TFP  regulatory  proteins.  Signal  processing  through  PilG  and  PilH  is  critical  for  surface-dependent  cAMP  production.  PilG  promotes  cAMP  production  and  upregulation  of  the  surface  dependent  transcriptional  program  while  PilH  has  the  opposite  effect. The  Pil-Chp  mechanosensory  system  is  required  for  twitching  motility,  partially  independently  of  cAMP  levels.  In  Chapter  2,  we  demonstrate  that  P.  aeruginosa  actively  directs  twitching  in  the  direction  of  mechanical  input  from  TFP,  in  a  process  called  mechanotaxis.  The  Pil-Chp  system  controls  the  balance  of  forward  and  reverse  twitching  motility  of  single  cells  in  response  to  the  mechanical  inputs.  We  show  that  the  Pil-Chp  response  regulators  PilG  and  PilH  control  the  polarization  of  the  TFP  extension  motor  PilB.  PilG  localizes  to  both  poles,  but  shows  greater  accumulation  at  the  leading  pole,  where  it  stimulates  polarization  favoring  forward  migration.  In  contrast,  PilH,  is  primarily  cytoplasmic,  thereby  globally  antagonizing  PilG.  Subcellular  segregation  of  PilG  and  PilH  efficiently  orchestrates  their  antagonistic  functions,  ultimately  enabling  rapid  reversals  upon  perturbations.  The  distinct  localization  of  response  regulators  establishes  a  signaling  landscape  known  as  local-excitation,  global-inhibition  in  higher  order  organisms.In  Chapter  3,  we  demonstrate  that  PilG  and  PilH  enable  dynamic  cell  polarization  by  coupling  their  antagonistic  functions  on  TFP  extension.  By  precisely  quantifying  the  localization  of  fluorescent  protein  fusions,  we  show  that  phosphorylation  of  PilG  by  the histidine  kinase  ChpA  controls  PilG  polarization.  Although  PilH  is  not  inherently  required  for  twitching  reversals,  upon  phosphorylation,  PilH  becomes  activated  and  breaks  the  local  positive  feedback  established  by  PilG  so  that  forward-twitching  cells  can  reverse.  To  spatially  resolve  mechanical  signals,  the  Pil-Chp  system  thus  locally  transduces  signals  with  a  main  output  response  regulator,  PilG.  To  respond  to  signal  changes,  Chp  uses  its  second  regulator,  PilH,  to  break  the  local  feedback.In  Chapter  4,  we  report  the  mechanism  of  sensory  adaptation  in  the  Pil-Chp  mechanosensory  system.  Bacterial  sensory  adaptation  has  primarily  been  studied  in  flagellar-mediated  chemotaxis,  where  reversible  methylation  of  sensory  receptors  by  a  methyltransferase  and  a  methylesterase  "tune"  their  sensitivity  of  signaling.  The  Pil-Chp  system  encodes  the  PilK  methyltransferase,  predicted  to  methylate  PilJ,  and  the  ChpB  methylesterase,  predicted  to  demethylate  PilJ;  however,  whether  sensory  adaptation  occurs  in  response  to  surface  contact  remained  underexplored.  Using  biochemistry,  genetics,  and  cell  biology,  we  discovered  that  PilK  and  ChpB  are  segregated  to  opposing  cell  poles  as  P.  aeruginosa  explore  surfaces.  By  coordinating  the  localization  of  both  enzymes,  we  found  that  the  Pil-Chp  response  regulators  influence  local  PilJ  methylation  in  vivo.  We  propose  a  model  in  which  spatially  resolved  mechanical  inputs  transmitted  by  TFP  not  only  alter  PilG  and  PilH  signaling  mechanisms  but  locally  controls  PilJ  methylation  to  modulate  twitching  motility  reversal  rates  and  surface-dependent  cAMP  production.  Despite  decades  of  chemosensory  adaptation  studies,  our  work  has  uncovered  an  unrecognized  mechanism  that  bacteria  use  to  achieve  adaptation  to  mechanical  sensory  stimuli.Acinetobacter  species  are  opportunistic  pathogens  that  are  ubiquitous  throughout  the  environment  and  are  emerging  as  a  public  health  threat  around  the  world  due  to  their  widespread  multidrug  resistance.  Intriguingly,  many  Acinetobacter  strains  encode  homologs  of  the  P.  aeruginosa  Pil-Chp  mechanosensory  system.  In  Chapter  5,  we  demonstrate  that  A.  nosocomialis  strain  M2,  a  pathogenic  member  of  the  Acinetobacter  calcoaceticus-baumannii  complex,  has  a  robust  surface-dependent  transcriptional  response.  We  speculate  that  the  homologous  Pil-Chp  mechanosensory  system  is  responsible  for  the  surface-dependent  transcriptional  response  that  we  report  in  this  dissertation.Overall,  this  dissertation  demonstrates  that  mechanosensing  through  the  Pil-Chp  system  takes  advantage  of  the  intricate  internal  organization  of  bacteria  to  sense  spatially  resolved  mechanical  information.  As  medically  Acinetobacter  species  exhibit  a  surface  transcriptional  response,  defining  the  mechanosensing  mechanism  of  Acinetobacter  species  represents  an  exciting  area  of  investigation.  Understanding  the  mechanisms  of  bacterial  mechanosensing  may  lead  to  the  generation  of  desperately  needed  therapeutics  to  treat  multi-drug  resistant  infections,  such  as  the  ones  typically  caused  by  P.  aeruginosa  and  medically  relevant  Acinetobacter  species. 
■590    ▼aSchool  code:  0034.
■650  4▼aMicrobiology.
■650  4▼aCellular  biology.
■650  4▼aMolecular  biology.
■653    ▼aAcinetobacter  species
■653    ▼aMechanosensing
■653    ▼aPseudomonas  aeruginosa
■653    ▼aSensory  adaptation
■653    ▼aSensory  systems
■653    ▼aSignal  transduction
■690    ▼a0410
■690    ▼a0379
■690    ▼a0307
■71020▼aUniversity  of  California,  San  Francisco▼bBiomedical  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g85-09B.
■790    ▼a0034
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160377▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0030325 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치