본문

서브메뉴

Brain-Derived Extracellular Vesicles as Therapeutic Vehicles and Molecular Probes in the Neonatal Brain.
Brain-Derived Extracellular Vesicles as Therapeutic Vehicles and Molecular Probes in the Neonatal Brain.

상세정보

자료유형  
 학위논문
Control Number  
0017162664
International Standard Book Number  
9798384094104
Dewey Decimal Classification Number  
610
Main Entry-Personal Name  
Nguyen, Nam Phuong.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Washington., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
151 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Nance, Elizabeth.
Dissertation Note  
Thesis (Ph.D.)--University of Washington, 2024.
Summary, Etc.  
요약In the central nervous system (CNS), intercellular communication through extracellular vesicles (EVs) is crucial for sustained trauma response and tissue repair following injury. EVs are biologically derived nanoparticles released by every cell that carry a diverse cargo of biomolecules important for cell communication including proteins, lipids, carbohydrates, and genetic material. The contents of EV cargo is an active research question in the field, and has been shown to be dependent on cell type, as well as environmental and physiological changes. As EVs are both produced and trafficked by cells, they are strong therapeutic candidates with several inherent design advantages over existing nanoparticle therapeutics: biostability, biocompatibility, lipid bilayer protection of cargo, and inherent cell uptake mechanisms. These advantages are especially important for drug delivery to the brain, which presents several therapeutic barriers such as the cerebral spinal fluid barrier and tortuous brain parenchyma. In addition, the blood brain barrier (BBB) poses a great challenge for therapeutics researchers as it excludes 98% of all small molecule and macromolecular drugs from passing but EVs have demonstrated an ability to cross. Despite growing interests in advancing EV therapeutics for brain injury and disease, there are two significant challenges hindering their development and clinical translation: 1) lack of physiologically relevant EV models and 2) a need for greater clarity about EV localization and transport in brain tissue. To address the first challenge, I evaluated the therapeutic efficacy of EVs derived from brain tissue (BEVs), rather than the standard approach of using EVs from cell culture. Compared to EVs derived from 2D cell monoculture models, those derived from 3D tissue are more physiologically relevant as they represent a heterogenous population that mirrors the existence of diverse cell types found in native brain tissue. When evaluating the therapeutic potential of BEVs in an ex vivo model of oxygen glucose deprivation (OGD), BEVs exhibited dose- and time-dependent therapeutic effects on injured tissue. BEVs induced a shift in the microglial morphology of OGD tissues from an inflammatory towards a restorative phenotype, while simultaneously increasing anti-inflammatory cytokine expression and decreasing cell cytotoxicity. These promising results led to further studies to address the second challenge-a lack in understanding about BEV localization and transport.To track BEVs in the brain we conjugated BEVs to either quantum dots (QDs) or novel oligonucleotide biobarcodes (oligobarcodes) using an efficient click chemistry reaction. Through a combination of confocal imaging and multiple particle tracking, the QD conjugation allowed us to visualize the spatial distribution of BEVs in brain tissue, which was regionally dependent. QD conjugations also allowed us to track BEV transport properties in real-time to confirm that BEV behavior was regionally dependent. We then used oligobarcoded BEVs to quantitatively measure the BEV uptake in both glial and non-glial cells in healthy and OGD brain tissue. Microglia, the resident immune cell of the brain, exhibited increased and preferential uptake of oligobarcoded BEVs compared to blank oligobarcode controls. We then expanded our oligobarcode-EV conjugation strategy to study the uptake of semen-derived EVs in the vaginal tract, demonstrating the broad translational opportunities that our platform provided to tracking EVs from any source. Collectively this work demonstrates the therapeutic potential of tissue-derived BEVs and offers a dual-conjugation technique to visualize and track EVs from any source in physiological environments. Our novel QD and oligobarcode conjugation strategy is an accessible technique that can be translated across different biological models to provide both quantitative and qualitative evaluation of EV visualization and tracking that will advance the EV therapeutics landscape.
Subject Added Entry-Topical Term  
Bioengineering.
Subject Added Entry-Topical Term  
Nanoscience.
Subject Added Entry-Topical Term  
Neurosciences.
Subject Added Entry-Topical Term  
Genetics.
Index Term-Uncontrolled  
Extracellular vesicles
Index Term-Uncontrolled  
Microglia
Index Term-Uncontrolled  
Multiple particle tracking
Index Term-Uncontrolled  
Neonatal hypoxia ischemia
Index Term-Uncontrolled  
Oligonucleotide barcode
Index Term-Uncontrolled  
Quantum dot
Added Entry-Corporate Name  
University of Washington Molecular Engineering and Sciences
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654230

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162664
■00520250211152039
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384094104
■035    ▼a(MiAaPQ)AAI31336104
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610
■1001  ▼aNguyen,  Nam  Phuong.
■24510▼aBrain-Derived  Extracellular  Vesicles  as  Therapeutic  Vehicles  and  Molecular  Probes  in  the  Neonatal  Brain.
■260    ▼a[S.l.]▼bUniversity  of  Washington.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a151  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Nance,  Elizabeth.
■5021  ▼aThesis  (Ph.D.)--University  of  Washington,  2024.
■520    ▼aIn  the  central  nervous  system  (CNS),  intercellular  communication  through  extracellular  vesicles  (EVs)  is  crucial  for  sustained  trauma  response  and  tissue  repair  following  injury.  EVs  are  biologically  derived  nanoparticles  released  by  every  cell  that  carry  a  diverse  cargo  of  biomolecules  important  for  cell  communication  including  proteins,  lipids,  carbohydrates,  and  genetic  material.  The  contents  of  EV  cargo  is  an  active  research  question  in  the  field,  and  has  been  shown  to  be  dependent  on  cell  type,  as  well  as  environmental  and  physiological  changes.    As  EVs  are  both  produced  and  trafficked  by  cells,  they  are  strong  therapeutic  candidates  with  several  inherent  design  advantages  over  existing  nanoparticle  therapeutics:  biostability,  biocompatibility,  lipid  bilayer  protection  of  cargo,  and  inherent  cell  uptake  mechanisms.    These  advantages  are  especially  important  for  drug  delivery  to  the  brain,  which  presents  several  therapeutic  barriers  such  as  the  cerebral  spinal  fluid  barrier  and  tortuous  brain  parenchyma.  In  addition,  the  blood  brain  barrier  (BBB)  poses  a  great  challenge  for  therapeutics  researchers  as  it  excludes  98%  of  all  small  molecule  and  macromolecular  drugs  from  passing  but  EVs  have  demonstrated  an  ability  to  cross.  Despite  growing  interests  in  advancing  EV  therapeutics  for  brain  injury  and  disease,  there  are  two  significant  challenges  hindering  their  development  and  clinical  translation:  1)  lack  of  physiologically  relevant  EV  models  and  2)  a  need  for  greater  clarity  about  EV  localization  and  transport  in  brain  tissue.  To  address  the  first  challenge,  I  evaluated  the  therapeutic  efficacy  of  EVs  derived  from  brain  tissue  (BEVs),  rather  than  the  standard  approach  of  using  EVs  from  cell  culture.  Compared  to  EVs  derived  from  2D  cell  monoculture  models,  those  derived  from  3D  tissue  are  more  physiologically  relevant  as  they  represent  a  heterogenous  population  that  mirrors  the  existence  of  diverse  cell  types  found  in  native  brain  tissue.  When  evaluating  the  therapeutic  potential  of  BEVs  in  an  ex  vivo  model  of  oxygen  glucose  deprivation  (OGD),  BEVs  exhibited  dose-  and  time-dependent  therapeutic  effects  on  injured  tissue.  BEVs  induced  a  shift  in  the  microglial  morphology  of  OGD  tissues  from  an  inflammatory  towards  a  restorative  phenotype,  while  simultaneously  increasing  anti-inflammatory  cytokine  expression  and  decreasing  cell  cytotoxicity.  These  promising  results  led  to  further  studies  to  address  the  second  challenge-a  lack  in  understanding  about  BEV  localization  and  transport.To  track  BEVs  in  the  brain  we  conjugated  BEVs  to  either  quantum  dots  (QDs)  or  novel  oligonucleotide  biobarcodes  (oligobarcodes)  using  an  efficient  click  chemistry  reaction.  Through  a  combination  of  confocal  imaging  and  multiple  particle  tracking,  the  QD  conjugation  allowed  us  to  visualize  the  spatial  distribution  of  BEVs  in  brain  tissue,  which  was  regionally  dependent.  QD  conjugations  also  allowed  us  to  track  BEV  transport  properties  in  real-time  to  confirm  that  BEV  behavior  was  regionally  dependent.  We  then  used  oligobarcoded  BEVs  to  quantitatively  measure  the  BEV  uptake  in  both  glial  and  non-glial  cells  in  healthy  and  OGD  brain  tissue.  Microglia,  the  resident  immune  cell  of  the  brain,  exhibited  increased  and  preferential  uptake  of  oligobarcoded  BEVs  compared  to  blank  oligobarcode  controls.  We  then  expanded  our  oligobarcode-EV  conjugation  strategy  to  study  the  uptake  of  semen-derived  EVs  in  the  vaginal  tract,  demonstrating  the  broad  translational  opportunities  that  our  platform  provided  to  tracking  EVs  from  any  source.  Collectively  this  work  demonstrates  the  therapeutic  potential  of  tissue-derived  BEVs  and  offers  a  dual-conjugation  technique  to  visualize  and  track  EVs  from  any  source  in  physiological  environments.  Our  novel  QD  and  oligobarcode  conjugation  strategy  is  an  accessible  technique  that  can  be  translated  across  different  biological  models  to  provide  both  quantitative  and  qualitative  evaluation  of  EV  visualization  and  tracking  that  will  advance  the  EV  therapeutics  landscape.
■590    ▼aSchool  code:  0250.
■650  4▼aBioengineering.
■650  4▼aNanoscience.
■650  4▼aNeurosciences.
■650  4▼aGenetics.
■653    ▼aExtracellular  vesicles
■653    ▼aMicroglia
■653    ▼aMultiple  particle  tracking
■653    ▼aNeonatal  hypoxia  ischemia
■653    ▼aOligonucleotide  barcode
■653    ▼aQuantum  dot
■690    ▼a0202
■690    ▼a0565
■690    ▼a0317
■690    ▼a0369
■71020▼aUniversity  of  Washington▼bMolecular  Engineering  and  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0250
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162664▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0030152 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치