본문

서브메뉴

A Mechanistic Reduced Order Model (ROM) of Pharmaceutical Tablet Dissolution for Design, Optimization, and Control of Manufacturing Processes.
A Mechanistic Reduced Order Model (ROM) of Pharmaceutical Tablet Dissolution for Design, Optimization, and Control of Manufacturing Processes.

상세정보

자료유형  
 학위논문
Control Number  
0017162732
International Standard Book Number  
9798342106092
Dewey Decimal Classification Number  
620.112
Main Entry-Personal Name  
Ferdoush, Shumaiya.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
165 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Gonzalez, Marcial.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약The dissolution profile is one of the most important critical quality attributes (CQAs) for pharmaceutical solid oral dosage forms, as failure to meet the dissolution specification can impact bioavailability. Dissolution tests are essential to assess lot-to-lot product quality and guide the development of new formulations. Therefore, predictive dissolution reduced-order models (ROM) are crucial for the successful implementation of any real-time release testing (RTRT) strategy. Mechanistic and semi-mechanistic ROMs of tablet dissolution for realizing quality by control (QbC) and RTRT frameworks in continuous manufacturing are still scarce or nonexistent. Moreover, realizing the underlying coupled mechanics of wetting, swelling, disintegration, and dissolution is still an open question. This dissertation contributes to developing a mechanistic ROM of pharmaceutical tablet dissolution for the design, optimization, and control of manufacturing processes. We follow several steps towards the progression of the mechanistic model development. First, we develop a semi-mechanistic ROM to capture the relationship between critical process parameters (CPPs), critical material attributes (CMAs), and dissolution profiles. We demonstrate the versatility and the capability of the semi-mechanistic ROM to estimate changes in dissolution due to process disturbances in tablet porosity, lubrication conditions, and moisture content in the powder blend. Next, to understand the underlying coupled mechanism of wetting, swelling, disintegration, and dissolution, we use dynamic micro-computed tomography (micro-CT) with a high temporal resolution to visualize water penetration through the porous network of immediate-release tablets. We couple liquid penetration due to capillary pressure described by the Lucas-Washburn theory with the first-order swelling kinetics of the excipients to provide a physical interpretation of the experimental observations. From the mechanistic understanding of the water penetration kinetics using the micro-CT tests, we propose a two-stage mechanistic ROM, which is comprised of (i) a mechanistic dissolution model of the active pharmaceutical ingredient (API) that solves a population balance model (PBM) for a given API crystal size distribution and dissolution rate coefficient, and (ii) a tablet wetting function that estimates the rate at which the API is exposed to the buffer solution. These two sub-models are coupled by means of convolution in time to capture the start time of the API dissolution process as water uptake, swelling, and disintegration take place. Finally, we demonstrate the versatility and the capability of the mechanistic API dissolution model and the two-stage tablet dissolution ROM to represent the dissolution profile of different pharmaceutical formulations and its connection with CMAs, CPPs, and other CQAs, namely initial API crystal size distribution, porosity, composition, and dimensions of the tablet. In all of the cases considered in this work, the estimations of the model are in good agreement with experimental data.
Subject Added Entry-Topical Term  
Tensile strength.
Subject Added Entry-Topical Term  
Dissolution.
Subject Added Entry-Topical Term  
Parameter identification.
Subject Added Entry-Topical Term  
Pharmaceuticals.
Subject Added Entry-Topical Term  
Vitamin B.
Subject Added Entry-Topical Term  
Batch processes.
Subject Added Entry-Topical Term  
Water.
Subject Added Entry-Topical Term  
Lubricants & lubrication.
Subject Added Entry-Topical Term  
Authorship.
Subject Added Entry-Topical Term  
Frequency distribution.
Subject Added Entry-Topical Term  
Lactose.
Subject Added Entry-Topical Term  
Crystals.
Subject Added Entry-Topical Term  
Contact angle.
Subject Added Entry-Topical Term  
Density.
Subject Added Entry-Topical Term  
Shear strain.
Subject Added Entry-Topical Term  
Moisture content.
Subject Added Entry-Topical Term  
Parameter estimation.
Subject Added Entry-Topical Term  
Analgesics.
Subject Added Entry-Topical Term  
Industrial engineering.
Subject Added Entry-Topical Term  
Mechanics.
Subject Added Entry-Topical Term  
Pharmaceutical sciences.
Subject Added Entry-Topical Term  
Statistics.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654207

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162732
■00520250211152047
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342106092
■035    ▼a(MiAaPQ)AAI31345203
■035    ▼a(MiAaPQ)Purdue25653354
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.112
■1001  ▼aFerdoush,  Shumaiya.
■24512▼aA  Mechanistic  Reduced  Order  Model  (ROM)  of  Pharmaceutical  Tablet  Dissolution  for  Design,  Optimization,  and  Control  of  Manufacturing  Processes.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a165  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Gonzalez,  Marcial.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aThe  dissolution  profile  is  one  of  the  most  important  critical  quality  attributes  (CQAs)  for  pharmaceutical  solid  oral  dosage  forms,  as  failure  to  meet  the  dissolution  specification  can  impact  bioavailability.  Dissolution  tests  are  essential  to  assess  lot-to-lot  product  quality  and  guide  the  development  of  new  formulations.  Therefore,  predictive  dissolution  reduced-order  models  (ROM)  are  crucial  for  the  successful  implementation  of  any  real-time  release  testing  (RTRT)  strategy.  Mechanistic  and  semi-mechanistic  ROMs  of  tablet  dissolution  for  realizing  quality  by  control  (QbC)  and  RTRT  frameworks  in  continuous  manufacturing  are  still  scarce  or  nonexistent.  Moreover,  realizing  the  underlying  coupled  mechanics  of  wetting,  swelling,  disintegration,  and  dissolution  is  still  an  open  question.  This  dissertation  contributes  to  developing  a  mechanistic  ROM  of  pharmaceutical  tablet  dissolution  for  the  design,  optimization,  and  control  of  manufacturing  processes.  We  follow  several  steps  towards  the  progression  of  the  mechanistic  model  development.  First,  we  develop  a  semi-mechanistic  ROM  to  capture  the  relationship  between  critical  process  parameters  (CPPs),  critical  material  attributes  (CMAs),  and  dissolution  profiles.  We  demonstrate  the  versatility  and  the  capability  of  the  semi-mechanistic  ROM  to  estimate  changes  in  dissolution  due  to  process  disturbances  in  tablet  porosity,  lubrication  conditions,  and  moisture  content  in  the  powder  blend.  Next,  to  understand  the  underlying  coupled  mechanism  of  wetting,  swelling,  disintegration,  and  dissolution,  we  use  dynamic  micro-computed  tomography  (micro-CT)  with  a  high  temporal  resolution  to  visualize  water  penetration  through  the  porous  network  of  immediate-release  tablets.  We  couple  liquid  penetration  due  to  capillary  pressure  described  by  the  Lucas-Washburn  theory  with  the  first-order  swelling  kinetics  of  the  excipients  to  provide  a  physical  interpretation  of  the  experimental  observations.  From  the  mechanistic  understanding  of  the  water  penetration  kinetics  using  the  micro-CT  tests,  we  propose  a  two-stage  mechanistic  ROM,  which  is  comprised  of  (i)  a  mechanistic  dissolution  model  of  the  active  pharmaceutical  ingredient  (API)  that  solves  a  population  balance  model  (PBM)  for  a  given  API  crystal  size  distribution  and  dissolution  rate  coefficient,  and  (ii)  a  tablet  wetting  function  that  estimates  the  rate  at  which  the  API  is  exposed  to  the  buffer  solution.  These  two  sub-models  are  coupled  by  means  of  convolution  in  time  to  capture  the  start  time  of  the  API  dissolution  process  as  water  uptake,  swelling,  and  disintegration  take  place.  Finally,  we  demonstrate  the  versatility  and  the  capability  of  the  mechanistic  API  dissolution  model  and  the  two-stage  tablet  dissolution  ROM  to  represent  the  dissolution  profile  of  different  pharmaceutical  formulations  and  its  connection  with  CMAs,  CPPs,  and  other  CQAs,  namely  initial  API  crystal  size  distribution,  porosity,  composition,  and  dimensions  of  the  tablet.  In  all  of  the  cases  considered  in  this  work,  the  estimations  of  the  model  are  in  good  agreement  with  experimental  data.
■590    ▼aSchool  code:  0183.
■650  4▼aTensile  strength.
■650  4▼aDissolution.
■650  4▼aParameter  identification.
■650  4▼aPharmaceuticals.
■650  4▼aVitamin  B.
■650  4▼aBatch  processes.
■650  4▼aWater.
■650  4▼aLubricants  &  lubrication.
■650  4▼aAuthorship.
■650  4▼aFrequency  distribution.
■650  4▼aLactose.
■650  4▼aCrystals.
■650  4▼aContact  angle.
■650  4▼aDensity.
■650  4▼aShear  strain.
■650  4▼aMoisture  content.
■650  4▼aParameter  estimation.
■650  4▼aAnalgesics.
■650  4▼aIndustrial  engineering.
■650  4▼aMechanics.
■650  4▼aPharmaceutical  sciences.
■650  4▼aStatistics.
■690    ▼a0546
■690    ▼a0346
■690    ▼a0572
■690    ▼a0463
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162732▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0030129 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치