본문

서브메뉴

Matrix Sketching in Optimization.
Matrix Sketching in Optimization.

상세정보

자료유형  
 학위논문
Control Number  
0017162735
International Standard Book Number  
9798342103176
Dewey Decimal Classification Number  
330
Main Entry-Personal Name  
Dexter, Gregory.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
199 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Drineas, Petros;Khanna, Rajiv.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약Continuous optimization is a fundamental topic both in theoretical computer science and applications of machine learning. Meanwhile, an important idea in the development modern algorithms it the use of randomness to achieve empirical speedup and improved theoretical runtimes. Stochastic gradient descent (SGD) and matrix-multiplication time linear program solvers [1] are two important examples of such achievements. Matrix sketching and related ideas provide a theoretical framework for the behavior of random matrices and vectors that arise in these algorithms, thereby provide a natural way to better understand the behavior of such randomized algorithms. In this dissertation, we consider three general problems in this area:1. Linear Programming: Interior point methods (IPMs) are a common approach for solving linear programs (LPs) with strong theoretical guarantees and solid empirical performance. The time complexity of these methods is dominated by the cost of solv- ing a linear system of equations at each iteration. In common applications of linear programming, particularly in machine learning and scientific computing, the size of this linear system can become prohibitively large, requiring the use of iterative solvers, which provide an approximate solution to the linear system. However, approximately solving the linear system at each iteration of an IPM invalidates the theoretical guar- antees of common IPM analyses. To remedy this, we theoretically and empirically analyze (slightly modified) predictor-correctorIPMs when using approximate linear solvers: our approach guarantees that, when certain conditions are satisfied, the num- ber of IPM iterations does not increase and that the final solution remains feasible. We also provide practical instantiations of approximate linear solvers that satisfy these conditions for special classes of constraint matrices using randomized linear algebra.2. Eigenvalue Estimation: We study the problem of approximating the eigenspectrum of a symmetric matrix A ∈ R with bounded entries (i.e.. ||A||s≤ 1). We present a simple sublinear time algorithm that approximates all eigenvalues of A up to additive error ten using those of a randomly sampled()x() principal submatrix. Our result can be viewed as a concentration bound on the complete eigenspectrum of a random submatrix, significantly extending known bounds on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of ennz(A) and Ar when the rows of A can be sampled with probabilities proportional to their sparsities or their squared l2 norms respectively. Here nnz(A) is the number of non-zero entries in A and AF is its Frobenius norm. Even for the strictly easier problems of approximating the singular values or testing the existence of large negative eigenvalues [2], our results are the first that take advantage of non-uniform sampling to give improved error bounds. From a technical perspective, our results require several new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for those of A. We complement our theoretical results with numerical simulations, which demonstrate the effectiveness of our algorithms in practice.
Subject Added Entry-Topical Term  
Sparsity.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Probability.
Subject Added Entry-Topical Term  
Linear programming.
Subject Added Entry-Topical Term  
Data science.
Subject Added Entry-Topical Term  
Eigenvalues.
Subject Added Entry-Topical Term  
Optimization algorithms.
Subject Added Entry-Topical Term  
Linear algebra.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654206

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162735
■00520250211152047
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342103176
■035    ▼a(MiAaPQ)AAI31345209
■035    ▼a(MiAaPQ)Purdue25655379
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a330
■1001  ▼aDexter,  Gregory.
■24510▼aMatrix  Sketching  in  Optimization.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a199  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Drineas,  Petros;Khanna,  Rajiv.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aContinuous  optimization  is  a  fundamental  topic  both  in  theoretical  computer  science  and  applications  of  machine  learning.  Meanwhile,  an  important  idea  in  the  development  modern  algorithms  it  the  use  of  randomness  to  achieve  empirical  speedup  and  improved  theoretical  runtimes.  Stochastic  gradient  descent  (SGD)  and  matrix-multiplication  time  linear  program  solvers  [1]  are  two  important  examples  of  such  achievements.  Matrix  sketching  and  related  ideas  provide  a  theoretical  framework  for  the  behavior  of  random  matrices  and  vectors  that  arise  in  these  algorithms,  thereby  provide  a  natural  way  to  better  understand  the  behavior  of  such  randomized  algorithms.  In  this  dissertation,  we  consider  three  general  problems  in  this  area:1.  Linear  Programming:  Interior  point  methods  (IPMs)  are  a  common  approach  for  solving  linear  programs  (LPs)  with  strong  theoretical  guarantees  and  solid  empirical  performance.  The  time  complexity  of  these  methods  is  dominated  by  the  cost  of  solv-  ing  a  linear  system  of  equations  at  each  iteration.  In  common  applications  of  linear  programming,  particularly  in  machine  learning  and  scientific  computing,  the  size  of  this  linear  system  can  become  prohibitively  large,  requiring  the  use  of  iterative  solvers,  which  provide  an  approximate  solution  to  the  linear  system.  However,  approximately  solving  the  linear  system  at  each  iteration  of  an  IPM  invalidates  the  theoretical  guar-  antees  of  common  IPM  analyses.  To  remedy  this,  we  theoretically  and  empirically  analyze  (slightly  modified)  predictor-correctorIPMs  when  using  approximate  linear  solvers:  our  approach  guarantees  that,  when  certain  conditions  are  satisfied,  the  num-  ber  of  IPM  iterations  does  not  increase  and  that  the  final  solution  remains  feasible.  We  also  provide  practical  instantiations  of  approximate  linear  solvers  that  satisfy  these  conditions  for  special  classes  of  constraint  matrices  using  randomized  linear  algebra.2.  Eigenvalue  Estimation:  We  study  the  problem  of  approximating  the  eigenspectrum  of  a  symmetric  matrix  A  ∈  R  with  bounded  entries  (i.e..  ||A||s≤  1).  We  present  a  simple  sublinear  time  algorithm  that  approximates  all  eigenvalues  of  A  up  to  additive  error  ten  using  those  of  a  randomly  sampled()x()  principal  submatrix.  Our  result  can  be  viewed  as  a  concentration  bound  on  the  complete  eigenspectrum  of  a  random  submatrix,  significantly  extending  known  bounds  on  just  the  singular  values  (the  magnitudes  of  the  eigenvalues).  We  give  improved  error  bounds  of  ennz(A)  and  Ar  when  the  rows  of  A  can  be  sampled  with  probabilities  proportional  to  their  sparsities  or  their  squared  l2  norms  respectively.  Here  nnz(A)  is  the  number  of  non-zero  entries  in  A  and  AF  is  its  Frobenius  norm.  Even  for  the  strictly  easier  problems  of  approximating  the  singular  values  or  testing  the  existence  of  large  negative  eigenvalues  [2],  our  results  are  the  first  that  take  advantage  of  non-uniform  sampling  to  give  improved  error  bounds.  From  a  technical  perspective,  our  results  require  several  new  eigenvalue  concentration  and  perturbation  bounds  for  matrices  with  bounded  entries.  Our  non-uniform  sampling  bounds  require  a  new  algorithmic  approach,  which  judiciously  zeroes  out  entries  of  a  randomly  sampled  submatrix  to  reduce  variance,  before  computing  the  eigenvalues  of  that  submatrix  as  estimates  for  those  of  A.  We  complement  our  theoretical  results  with  numerical  simulations,  which  demonstrate  the  effectiveness  of  our  algorithms  in  practice.
■590    ▼aSchool  code:  0183.
■650  4▼aSparsity.
■650  4▼aComputer  science.
■650  4▼aNeural  networks.
■650  4▼aProbability.
■650  4▼aLinear  programming.
■650  4▼aData  science.
■650  4▼aEigenvalues.
■650  4▼aOptimization  algorithms.
■650  4▼aLinear  algebra.
■690    ▼a0984
■690    ▼a0800
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162735▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0030128 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치