본문

서브메뉴

The Development of Complex Biomembrane Platforms to Investigate the Impact of Membrane Disrupting Agents on Membrane Biophysical Properties.
The Development of Complex Biomembrane Platforms to Investigate the Impact of Membrane Disrupting Agents on Membrane Biophysical Properties.

상세정보

자료유형  
 학위논문
Control Number  
0017160244
International Standard Book Number  
9798382840772
Dewey Decimal Classification Number  
660
Main Entry-Personal Name  
Bint E. Naser, Samavi Farnush.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
269 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Daniel, Susan.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2024.
Summary, Etc.  
요약For adapting to competitive environments, organisms, such as viruses and bacteria, often produce toxins and pathogens that target cellular membrane components. Even pharmaceutical products are frequently designed to interact with membrane constituents for better efficacy. The activity of these compounds depends significantly on membrane characteristics, such as membrane composition, surface charge, elasticity, permeability, etc. In turn, exposure to extracytosolic agents may alter membrane assembly, maintenance, and/or function. To acclimate to these induced stresses, cells activate distinct responses commonly controlled by transmembrane signaling, furthering changes in membrane properties. Given how important membrane components are for regulating membrane interactions, it is crucial to study them in isolation from internal cellular processes to understand how external stressors impact specific membrane properties.Model membrane systems, such as solid-supported lipid bilayers (SLBs), are widely used to simulate cellular membranes under controlled conditions. However, most models, utilizing one or more synthetic lipids, cannot capture the intrinsic molecular diversity, limiting their application. To overcome this, the Daniel group has pioneered SLB formation using vesicles extracted from mammalian plasma membranes or outer membranes of Gram-negative bacteria. Membrane vesicles (MVs) provide a realistic model of the native membrane enabling the application of vesicle-derived SLBs to assess membrane biophysics and integrity. Even though considerable efforts have been made in developing SLB platforms showcasing their potential in monitoring subtle changes in membrane properties, their application in the investigation of membrane interactions with molecules of special interest is still lacking.In this dissertation, I have extended the established utility of supported bilayer platforms to understand the impact of specific membrane processes on membrane properties using a combination of surface analytical techniques. I employed liposomes along with MVs isolated from different species to develop SLBs for real-time monitoring of changes in membrane properties influencing and/or arising from membrane interactions. This project provides a means to attain insight into the molecular mechanism of membrane-disrupting agents and membrane responses to such disruptions. My findings connect the existing, simple SLB platforms with complex whole-cell assays for studying membrane interactions with outside interferences and inform the development of novel compounds to modulate these interactions.
Subject Added Entry-Topical Term  
Chemical engineering.
Subject Added Entry-Topical Term  
Microbiology.
Subject Added Entry-Topical Term  
Nanotechnology.
Index Term-Uncontrolled  
Biosensing
Index Term-Uncontrolled  
Electrochemical sensing
Index Term-Uncontrolled  
Membrane biophysics
Index Term-Uncontrolled  
Membrane permeability
Index Term-Uncontrolled  
Microelectrode
Index Term-Uncontrolled  
Vesicles
Added Entry-Corporate Name  
Cornell University Chemical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654091

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160244
■00520250211150941
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382840772
■035    ▼a(MiAaPQ)AAI30991807
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a660
■1001  ▼aBint  E.  Naser,  Samavi  Farnush.▼0(orcid)0000-0001-6838-0124
■24510▼aThe  Development  of  Complex  Biomembrane  Platforms  to  Investigate  the  Impact  of  Membrane  Disrupting  Agents  on  Membrane  Biophysical  Properties.
■260    ▼a[S.l.]▼bCornell  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a269  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Daniel,  Susan.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2024.
■520    ▼aFor  adapting  to  competitive  environments,  organisms,  such  as  viruses  and  bacteria,  often  produce  toxins  and  pathogens  that  target  cellular  membrane  components.  Even  pharmaceutical  products  are  frequently  designed  to  interact  with  membrane  constituents  for  better  efficacy.  The  activity  of  these  compounds  depends  significantly  on  membrane  characteristics,  such  as  membrane  composition,  surface  charge,  elasticity,  permeability,  etc.  In  turn,  exposure  to  extracytosolic  agents  may  alter  membrane  assembly,  maintenance,  and/or  function.  To  acclimate  to  these  induced  stresses,  cells  activate  distinct  responses  commonly  controlled  by  transmembrane  signaling,  furthering  changes  in  membrane  properties.  Given  how  important  membrane  components  are  for  regulating  membrane  interactions,  it  is  crucial  to  study  them  in  isolation  from  internal  cellular  processes  to  understand  how  external  stressors  impact  specific  membrane  properties.Model  membrane  systems,  such  as  solid-supported  lipid  bilayers  (SLBs),  are  widely  used  to  simulate  cellular  membranes  under  controlled  conditions.  However,  most  models,  utilizing  one  or  more  synthetic  lipids,  cannot  capture  the  intrinsic  molecular  diversity,  limiting  their  application.  To  overcome  this,  the  Daniel  group  has  pioneered  SLB  formation  using  vesicles  extracted  from  mammalian  plasma  membranes  or  outer  membranes  of  Gram-negative  bacteria.  Membrane  vesicles  (MVs)  provide  a  realistic  model  of  the  native  membrane  enabling  the  application  of  vesicle-derived  SLBs  to  assess  membrane  biophysics  and  integrity.  Even  though  considerable  efforts  have  been  made  in  developing  SLB  platforms  showcasing  their  potential  in  monitoring  subtle  changes  in  membrane  properties,  their  application  in  the  investigation  of  membrane  interactions  with  molecules  of  special  interest  is  still  lacking.In  this  dissertation,  I  have  extended  the  established  utility  of  supported  bilayer  platforms  to  understand  the  impact  of  specific  membrane  processes  on  membrane  properties  using  a  combination  of  surface  analytical  techniques.  I  employed  liposomes  along  with  MVs  isolated  from  different  species  to  develop  SLBs  for  real-time  monitoring  of  changes  in  membrane  properties  influencing  and/or  arising  from  membrane  interactions.  This  project  provides  a  means  to  attain  insight  into  the  molecular  mechanism  of  membrane-disrupting  agents  and  membrane  responses  to  such  disruptions.  My  findings  connect  the  existing,  simple  SLB  platforms  with  complex  whole-cell  assays  for  studying  membrane  interactions  with  outside  interferences  and  inform  the  development  of  novel  compounds  to  modulate  these  interactions.
■590    ▼aSchool  code:  0058.
■650  4▼aChemical  engineering.
■650  4▼aMicrobiology.
■650  4▼aNanotechnology.
■653    ▼aBiosensing
■653    ▼aElectrochemical  sensing
■653    ▼aMembrane  biophysics
■653    ▼aMembrane  permeability
■653    ▼aMicroelectrode
■653    ▼aVesicles
■690    ▼a0542
■690    ▼a0410
■690    ▼a0652
■71020▼aCornell  University▼bChemical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160244▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0034049 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치