본문

서브메뉴

Mo-Si-B Based Coatings for the Suppression of High Temperature Water Vapor Attack.
Mo-Si-B Based Coatings for the Suppression of High Temperature Water Vapor Attack.

상세정보

자료유형  
 학위논문
Control Number  
0017162506
International Standard Book Number  
9798383567623
Dewey Decimal Classification Number  
621
Main Entry-Personal Name  
Harris, Chad.
Publication, Distribution, etc. (Imprint  
[S.l.] : The University of Wisconsin - Madison., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
150 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
General Note  
Advisor: Perepezko, John H.
Dissertation Note  
Thesis (Ph.D.)--The University of Wisconsin - Madison, 2024.
Summary, Etc.  
요약With current jet engines operating near the melting temperature of Ni-based superalloys, a solution to go beyond these temperatures is needed. As a result of complex cooling schemes and thermal barrier coatings, these turbine blade materials operate at ∼1150 °C, nearly 90% of the melting temperature (0.9 Tm). New materials must be developed that can operate at high (1300 °C) temperatures without the need for cooling. Refractory metal silicides, such as Mo‐Si‐B, are potential replacements for Ni‐based superalloys. A comprehensive Mo-Si-B coating system has been designed in our group's previous work; thus, optimization of the pack powder will allow for more efficient coating processes. Also, high temperature water vapor attack has been determined as a major contributor to turbine blade failure, which has necessitated the exploration of its effects on Mo-Si-B based coatings. To address the water vapor attack issue, an Al alloyed Mo-Si-B coating is designed and tested under high temperature, high-flow water vapor condition. To explore the Mo-Si-B coating application on a substrate other than Mo, a V substrate with Mo-Si-B coating is demonstrated and shows good oxidation performance at high temperature.In this study, silicide boron coating layers are created on a Mo substrate by pack cementation with NaF, Si, B, and Al2O3 powder. The silicide coating layer consists of MoB and MoSi2. The growth kinetics of the coating layers are estimated by identifying diffusion behaviors. The silicide coating layer growth constant (k0) is estimated to be ~86.04µm/h1/2, and the activation energy (Q) for the growth of the diffusion coating layer determined to be ~39.9kJ/mol for the examined coating temperatures of 900°C, 1000°C, and 1100°C. The thicknesses of the coating layers calculated by a formulated kinetic equation are compared with the experimental results. Although the 35Si:1B wt.% has the lowest activation energy, the values are too close to determine once standard deviation is taken into consideration. It has the largest thickness while still maintaining an appropriate amount of B in the coating. The growth kinetics of the coated layer and oxidation behaviors are discussed in terms of microstructure analysis and an equation to determine thickness is further developed.To extend the lifetime of the coating beyond its current limit, Al is diffused into the Mo-Si-B oxide layer to determine the effects it will have on the oxidation kinetics. The coating follows paralinear oxidation kinetics with a parabolic rate constant that is diffusion controlled and a linear rate constant that is interface controlled. The kP is 3.4x10-2 mg2/cm4h and the kL is 1.4x10-2 mg/cm-2h for the coating. This gives a 36% increase to lifetime vs the non-Al Mo-Si-B coating giving it 2560 hr. of estimated lifetime using the Opila model. The Al doped Mo-Si-B coating demonstrates excellent resistance to water vapor attacks at 1450 °C beyond what the current 35Si:1B Mo-Si-B coating is capable of. In high velocity water vapor testing, 60 m/s2, the estimated coating lifetime is 2589 hr., implying that the effects of the velocity of the water vapor may be negligible.Using the Mo-Si-B coating on other substrates is accomplished using a Mo slurry coating. V and V alloys are known to have very poor oxidation resistance, but when coated with a Mo coating and a Si:B coating, the substrates have shown a substantial increase in oxidation resistance. In water vapor, the V samples mass loss rate starts to equalize while in its uncoated form the samples fail through complete oxidation. With V and V alloy substrates being coated successfully, the possibility of success in other refractory metals will allow for broader applications of the Mo-Si-B coatings.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Engineering.
Index Term-Uncontrolled  
Coatings
Index Term-Uncontrolled  
High temperature materials
Index Term-Uncontrolled  
Molybdenum
Index Term-Uncontrolled  
Oxide resistant materials
Index Term-Uncontrolled  
Water vapor
Added Entry-Corporate Name  
The University of Wisconsin - Madison Materials Science and Engineering
Host Item Entry  
Dissertations Abstracts International. 86-01B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:653948

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162506
■00520250211152020
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383567623
■035    ▼a(MiAaPQ)AAI31332158
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621
■1001  ▼aHarris,  Chad.
■24510▼aMo-Si-B  Based  Coatings  for  the  Suppression  of  High  Temperature  Water  Vapor  Attack.
■260    ▼a[S.l.]▼bThe  University  of  Wisconsin  -  Madison.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a150  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-01,  Section:  B.
■500    ▼aAdvisor:  Perepezko,  John  H.
■5021  ▼aThesis  (Ph.D.)--The  University  of  Wisconsin  -  Madison,  2024.
■520    ▼aWith  current  jet  engines  operating  near  the  melting  temperature  of  Ni-based  superalloys,  a  solution  to  go  beyond  these  temperatures  is  needed.  As  a  result  of  complex  cooling  schemes  and  thermal  barrier  coatings,  these  turbine  blade  materials  operate  at  ∼1150  °C,  nearly  90%  of  the  melting  temperature  (0.9  Tm).  New  materials  must  be  developed  that  can  operate  at  high  (1300  °C)  temperatures  without  the  need  for  cooling.  Refractory  metal  silicides,  such  as  Mo‐Si‐B,  are  potential  replacements  for  Ni‐based  superalloys.  A  comprehensive  Mo-Si-B  coating  system  has  been  designed  in  our  group's  previous  work;  thus,  optimization  of  the  pack  powder  will  allow  for  more  efficient  coating  processes.  Also,  high  temperature  water  vapor  attack  has  been  determined  as  a  major  contributor  to  turbine  blade  failure,  which  has  necessitated  the  exploration  of  its  effects  on  Mo-Si-B  based  coatings.  To  address  the  water  vapor  attack  issue,  an  Al  alloyed  Mo-Si-B  coating  is  designed  and  tested  under  high  temperature,  high-flow  water  vapor  condition.  To  explore  the  Mo-Si-B  coating  application  on  a  substrate  other  than  Mo,  a  V  substrate  with  Mo-Si-B  coating  is  demonstrated  and  shows  good  oxidation  performance  at  high  temperature.In  this  study,  silicide  boron  coating  layers  are  created  on  a  Mo  substrate  by  pack  cementation  with  NaF,  Si,  B,  and  Al2O3  powder.  The  silicide  coating  layer  consists  of  MoB  and  MoSi2.  The  growth  kinetics  of  the  coating  layers  are  estimated  by  identifying  diffusion  behaviors.  The  silicide  coating  layer  growth  constant  (k0)  is  estimated  to  be  ~86.04µm/h1/2,  and  the  activation  energy  (Q)  for  the  growth  of  the  diffusion  coating  layer  determined  to  be  ~39.9kJ/mol  for  the  examined  coating  temperatures  of  900°C,  1000°C,  and  1100°C.  The  thicknesses  of  the  coating  layers  calculated  by  a  formulated  kinetic  equation  are  compared  with  the  experimental  results.  Although  the  35Si:1B  wt.%  has  the  lowest  activation  energy,  the  values  are  too  close  to  determine  once  standard  deviation  is  taken  into  consideration.  It  has  the  largest  thickness  while  still  maintaining  an  appropriate  amount  of  B  in  the  coating.  The  growth  kinetics  of  the  coated  layer  and  oxidation  behaviors  are  discussed  in  terms  of  microstructure  analysis  and  an  equation  to  determine  thickness  is  further  developed.To  extend  the  lifetime  of  the  coating  beyond  its  current  limit,  Al  is  diffused  into  the  Mo-Si-B  oxide  layer  to  determine  the  effects  it  will  have  on  the  oxidation  kinetics.  The  coating  follows  paralinear  oxidation  kinetics  with  a  parabolic  rate  constant  that  is  diffusion  controlled  and  a  linear  rate  constant  that  is  interface  controlled.  The  kP  is  3.4x10-2  mg2/cm4h  and  the  kL  is  1.4x10-2  mg/cm-2h  for  the  coating.  This  gives  a  36%  increase  to  lifetime  vs  the  non-Al  Mo-Si-B  coating  giving  it  2560  hr.  of  estimated  lifetime  using  the  Opila  model.  The  Al  doped  Mo-Si-B  coating  demonstrates  excellent  resistance  to  water  vapor  attacks  at  1450  °C  beyond  what  the  current  35Si:1B  Mo-Si-B  coating  is  capable  of.  In  high  velocity  water  vapor  testing,  60  m/s2,  the  estimated  coating  lifetime  is  2589  hr.,  implying  that  the  effects  of  the  velocity  of  the  water  vapor  may  be  negligible.Using  the  Mo-Si-B  coating  on  other  substrates  is  accomplished  using  a  Mo  slurry  coating.  V  and  V  alloys  are  known  to  have  very  poor  oxidation  resistance,  but  when  coated  with  a  Mo  coating  and  a  Si:B  coating,  the  substrates  have  shown  a  substantial  increase  in  oxidation  resistance.  In  water  vapor,  the  V  samples  mass  loss  rate  starts  to  equalize  while  in  its  uncoated  form  the  samples  fail  through  complete  oxidation.  With  V  and  V  alloy  substrates  being  coated  successfully,  the  possibility  of  success  in  other  refractory  metals  will  allow  for  broader  applications  of  the  Mo-Si-B  coatings.
■590    ▼aSchool  code:  0262.
■650  4▼aMechanical  engineering.
■650  4▼aMaterials  science.
■650  4▼aEngineering.
■653    ▼aCoatings
■653    ▼aHigh  temperature  materials
■653    ▼aMolybdenum
■653    ▼aOxide  resistant  materials
■653    ▼aWater  vapor
■690    ▼a0794
■690    ▼a0548
■690    ▼a0537
■71020▼aThe  University  of  Wisconsin  -  Madison▼bMaterials  Science  and  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-01B.
■790    ▼a0262
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162506▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0033020 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치