본문

서브메뉴

Integration of Composite Biomaterials and Microphysiologic Platforms for the Study of Cell Migration Phenotypes.
Integration of Composite Biomaterials and Microphysiologic Platforms for the Study of Cell...
Integration of Composite Biomaterials and Microphysiologic Platforms for the Study of Cell Migration Phenotypes.

상세정보

Material Type  
 학위논문
 
0017164489
Date and Time of Latest Transaction  
20250211153008
ISBN  
9798384044499
DDC  
610
Author  
Hiraki, Harrison L.
Title/Author  
Integration of Composite Biomaterials and Microphysiologic Platforms for the Study of Cell Migration Phenotypes.
Publish Info  
[S.l.] : University of Michigan., 2024
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Material Info  
311 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Baker, Brendon M.
학위논문주기  
Thesis (Ph.D.)--University of Michigan, 2024.
Abstracts/Etc  
요약Cell migration is a complex process ubiquitously observed across both physiologic development and disease progression. The phenotype by which cells migrate includes both single cell and multicellular modes, each of which confers cells with unique traits that facilitate survival, differentiation, and tissue-specific functions. However, cells are not rigidly locked into a preprogrammed migration phenotype, and plasticity during migration has been heavily associated with disease progression during development, chronic fibrosis, and cancer. While many external matrix cues and internal cell transcriptomic changes have been identified as determinants of cell migration, how these complex cues work in concert to dictate migration phenotype is not well understood. We therefor aim to develop a model within which both biophysical and biochemical cues can be systematically interrogated to direct cells towards desired migration phenotypes. Fibrous architecture and mechanics of the extracellular matrix (ECM) are known to play a large role in cell migration. Thus, the focus of this dissertation is on the development and use of a tunable fibrous composite biomaterial system to instruct cell migration phenotype and investigate functional consequences of differential phenotypes, specifically in the context of cancer invasion and sprouting angiogenesis.First, this thesis establishes an ECM-mimetic composite biomaterial within which fibrous architecture and bulk mechanics can be orthogonally tuned. To do so, synthetic fiber segments generated via electrospinning of dextran-vinyl sulfone (DexVS) are encapsulated into synthetic amorphous hydrogels of controllable mechanics. Incorporation of magnetic particles into the fiber segments additionally enabled controllable alignment within an external magnetic field. Our results demonstrated how fiber density, degree of fiber alignment, and hydrogel stiffness jointly regulate diverse epithelial cell migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. We identified matrix combinations to direct each migration phenotype and found that collective strands best resist drug-induced apoptosis.Next, this thesis develops two methods to generate capillary-scale microvasculature. First, microvascular networks were achieved by printing magnetic poly-caprolactone lattices that could be seeded with magnetized endothelial cells. These rapidly assembled networks supported survival of metabolically demanding induced pluripotent stem cell-derived cardiomyocytes. Second, sprouting angiogenesis from an engineered arteriole-scale endothelium through the aforementioned fibrous hydrogel composite was optimized. Fiber density, hydrogel stiffness, as well as pro-angiogenic ligand presentation within the matrix were orthogonally tuned to direct endothelial cell migration towards a desirable collective strand phenotype. Implantation of composite hydrogels into the fat pad of mice demonstrated robust host endothelial cell ingrowth and vascularization of the constructs.Lastly, this thesis combines migratory epithelial cells with engineered microvasculature to model cancer cell intravasation. Ductal epithelial structures were patterned adjacent to a perfused endothelium within a hydrogel. Invading epithelial cancer cells intravasated into the endothelium, and a pipeline was established to quantitatively assess epithelial invasion and intravasation efficiencies. Patient-derived pancreatic cancer lines were characterized for 2D morphology and epithelial versus mesenchymal traits and then subject to the intravasation microfluidic assay. These quantifiable cell line-specific traits were compared against patient clinical records to identify in vitro markers that may help predict patient outcomes.Overall, the work presented in this dissertation integrates composite biomaterials, microfluidic devices, and custom image analysis codes to investigate biophysical and biochemical contributions to cell migration phenotype. The results presented here will help inform biomaterial design for tissue regeneration applications and disease model development to screen therapeutic drugs.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Oncology.
Index Term-Uncontrolled  
Tissue engineering
Index Term-Uncontrolled  
Biomaterials
Index Term-Uncontrolled  
Cell migration
Index Term-Uncontrolled  
Cancer
Index Term-Uncontrolled  
Blood vessels
Index Term-Uncontrolled  
Microfluidic
Added Entry-Corporate Name  
University of Michigan Biomedical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:653803

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164489
■00520250211153008
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384044499
■035    ▼a(MiAaPQ)AAI31631425
■035    ▼a(MiAaPQ)umichrackham005673
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610
■1001  ▼aHiraki,  Harrison  L.
■24510▼aIntegration  of  Composite  Biomaterials  and  Microphysiologic  Platforms  for  the  Study  of  Cell  Migration  Phenotypes.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a311  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Baker,  Brendon  M.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aCell  migration  is  a  complex  process  ubiquitously  observed  across  both  physiologic  development  and  disease  progression.  The  phenotype  by  which  cells  migrate  includes  both  single  cell  and  multicellular  modes,  each  of  which  confers  cells  with  unique  traits  that  facilitate  survival,  differentiation,  and  tissue-specific  functions.  However,  cells  are  not  rigidly  locked  into  a  preprogrammed  migration  phenotype,  and  plasticity  during  migration  has  been  heavily  associated  with  disease  progression  during  development,  chronic  fibrosis,  and  cancer.  While  many  external  matrix  cues  and  internal  cell  transcriptomic  changes  have  been  identified  as  determinants  of  cell  migration,  how  these  complex  cues  work  in  concert  to  dictate  migration  phenotype  is  not  well  understood.  We  therefor  aim  to  develop  a  model  within  which  both  biophysical  and  biochemical  cues  can  be  systematically  interrogated  to  direct  cells  towards  desired  migration  phenotypes.  Fibrous  architecture  and  mechanics  of  the  extracellular  matrix  (ECM)  are  known  to  play  a  large  role  in  cell  migration.  Thus,  the  focus  of  this  dissertation  is  on  the  development  and  use  of  a  tunable  fibrous  composite  biomaterial  system  to  instruct  cell  migration  phenotype  and  investigate  functional  consequences  of  differential  phenotypes,  specifically  in  the  context  of  cancer  invasion  and  sprouting  angiogenesis.First,  this  thesis  establishes  an  ECM-mimetic  composite  biomaterial  within  which  fibrous  architecture  and  bulk  mechanics  can  be  orthogonally  tuned.  To  do  so,  synthetic  fiber  segments  generated  via  electrospinning  of  dextran-vinyl  sulfone  (DexVS)  are  encapsulated  into  synthetic  amorphous  hydrogels  of  controllable  mechanics.  Incorporation  of  magnetic  particles  into  the fiber  segments  additionally  enabled  controllable  alignment  within  an  external  magnetic  field.  Our  results  demonstrated  how  fiber  density,  degree  of  fiber  alignment,  and  hydrogel  stiffness  jointly  regulate  diverse  epithelial  cell  migration  phenotypes  spanning  amoeboid,  single  mesenchymal,  multicellular  cluster,  and  collective  strand.  We  identified  matrix  combinations  to  direct  each  migration  phenotype  and  found  that  collective  strands  best  resist  drug-induced  apoptosis.Next,  this  thesis  develops  two  methods  to  generate  capillary-scale  microvasculature.  First,  microvascular  networks  were  achieved  by  printing  magnetic  poly-caprolactone  lattices  that  could  be  seeded  with  magnetized  endothelial  cells.  These  rapidly  assembled  networks  supported  survival  of  metabolically  demanding  induced  pluripotent  stem  cell-derived  cardiomyocytes.  Second,  sprouting  angiogenesis  from  an  engineered  arteriole-scale  endothelium  through  the  aforementioned  fibrous  hydrogel  composite  was  optimized.  Fiber  density,  hydrogel  stiffness,  as  well  as  pro-angiogenic  ligand  presentation  within  the  matrix  were  orthogonally  tuned  to  direct  endothelial  cell  migration  towards  a  desirable  collective  strand  phenotype.  Implantation  of  composite  hydrogels  into  the  fat  pad  of  mice  demonstrated  robust  host  endothelial  cell  ingrowth  and  vascularization  of  the  constructs.Lastly,  this  thesis  combines  migratory  epithelial  cells  with  engineered  microvasculature  to  model  cancer  cell  intravasation.  Ductal  epithelial  structures  were  patterned  adjacent  to  a  perfused  endothelium  within  a  hydrogel.  Invading  epithelial  cancer  cells  intravasated  into  the  endothelium,  and  a  pipeline  was  established  to  quantitatively  assess  epithelial  invasion  and  intravasation  efficiencies.  Patient-derived  pancreatic  cancer  lines  were  characterized  for  2D  morphology  and  epithelial  versus  mesenchymal  traits  and  then  subject  to  the  intravasation microfluidic  assay.  These  quantifiable  cell  line-specific  traits  were  compared  against  patient  clinical  records  to  identify  in  vitro  markers  that  may  help  predict  patient  outcomes.Overall,  the  work  presented  in  this  dissertation  integrates  composite  biomaterials,  microfluidic  devices,  and  custom  image  analysis  codes  to  investigate  biophysical  and  biochemical  contributions  to  cell  migration  phenotype.  The  results  presented  here  will  help  inform  biomaterial  design  for  tissue  regeneration  applications  and  disease  model  development  to  screen  therapeutic  drugs.
■590    ▼aSchool  code:  0127.
■650  4▼aBiomedical  engineering.
■650  4▼aCellular  biology.
■650  4▼aOncology.
■653    ▼aTissue  engineering
■653    ▼aBiomaterials
■653    ▼aCell  migration
■653    ▼aCancer
■653    ▼aBlood  vessels
■653    ▼aMicrofluidic
■690    ▼a0541
■690    ▼a0379
■690    ▼a0992
■71020▼aUniversity  of  Michigan▼bBiomedical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164489▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0031075 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치