본문

서브메뉴

Fluid Interfacial Dynamics: From Droplets to Thin Films.
Fluid Interfacial Dynamics: From Droplets to Thin Films.

상세정보

자료유형  
 학위논문
Control Number  
0017162228
International Standard Book Number  
9798383226292
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Chen, Zih-Yin.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Minnesota., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
129 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
General Note  
Advisor: Lee, Sungyon.
Dissertation Note  
Thesis (Ph.D.)--University of Minnesota, 2024.
Summary, Etc.  
요약Many natural processes and industrial applications involve the understanding and modeling of interfacial fluid dynamics. Examples include the coating of a substrate with a liquid, the removal of liquid films from substrates, transport processes, droplets impact on substrates, etc. Given the ubiquity and significance of interfacial fluid flows, the overall goal of this thesis is to advance our fundamental understanding of interfacial fluid dynamics through theoretical modeling. To achieve this goal, we conduct three studies related to interfacial dynamics involving droplets and liquid films: (i) droplet impact dynamics with granular materials, (ii) droplet dynamics with an air jet, and (iii) dynamics of a liquid film with an undulating surface.Motivated by spray coating processes, we investigate how the presence of particles on a substrate changes the droplet impact dynamics. We analyze the spreading dynamics and splashing criterion of an impacting droplet on a layer of particles. A theoretical model is developed to consider the momentum of the spreading liquid and the time-dependent distribution of particles. Additionally, we establish a droplet splashing criterion based on the interaction between the impacting droplet and the particles. Our results provide insight into how the presence of particles lowers the critical impact velocity at which a droplet exhibits splashing, as the particle area fraction is systematically increased.We then focus on the dynamics of a partially-wetting droplet under an impinging air jet. We built a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging turbulent jet, in addition to the capillary and hydrostatic pressures of the droplet. Also, the simulations of the contact-line motion by using precursor film and disjoining pressure allows us to capture the physics of different droplet behaviors, which had previously been observed experimentally. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for droplet splitting and depinning.Lastly, we investigate the interfacial dynamics of a thin liquid film over an undulating solid substrate. To explore the physical mechanisms of free surface flows driven by periodic undulations, we developed a two-dimensional thin-film mathematical model. The model combines the effects of inertia, viscosity, gravity, and surface tension in a tractable way. Our model reveals that in the regime where gravity dominates over surface tension (i.e., large Bond number, Bo), the effects of surface tension drop out of the analysis, allowing the flow rate to only depend on Re and Ca/Bo, where Ca is the capillary number. In this same regime, we learn that inertia (Re) tends to enhance the flow rate, while increasing Ca/Bo reduces the flow rate.
Subject Added Entry-Topical Term  
Fluid mechanics.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Mechanics.
Index Term-Uncontrolled  
Droplets
Index Term-Uncontrolled  
Interfacial fluid dynamics
Index Term-Uncontrolled  
Thin films
Index Term-Uncontrolled  
Air jet
Added Entry-Corporate Name  
University of Minnesota Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-01B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:653750

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162228
■00520250211151948
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383226292
■035    ▼a(MiAaPQ)AAI31327964
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aChen,  Zih-Yin.
■24510▼aFluid  Interfacial  Dynamics:  From  Droplets  to  Thin  Films.
■260    ▼a[S.l.]▼bUniversity  of  Minnesota.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a129  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-01,  Section:  B.
■500    ▼aAdvisor:  Lee,  Sungyon.
■5021  ▼aThesis  (Ph.D.)--University  of  Minnesota,  2024.
■520    ▼aMany  natural  processes  and  industrial  applications  involve  the  understanding  and  modeling  of  interfacial  fluid  dynamics.  Examples  include  the  coating  of  a  substrate  with  a  liquid,  the  removal  of  liquid  films  from  substrates,  transport  processes,  droplets  impact  on  substrates,  etc.  Given  the  ubiquity  and  significance  of  interfacial  fluid  flows,  the  overall  goal  of  this  thesis  is  to  advance  our  fundamental  understanding  of  interfacial  fluid  dynamics  through  theoretical  modeling.  To  achieve  this  goal,  we  conduct  three  studies  related  to  interfacial  dynamics  involving  droplets  and  liquid  films:  (i)  droplet  impact  dynamics  with  granular  materials,  (ii)  droplet  dynamics  with  an  air  jet,  and  (iii)  dynamics  of  a  liquid  film  with  an  undulating  surface.Motivated  by  spray  coating  processes,  we  investigate  how  the  presence  of  particles  on  a  substrate  changes  the  droplet  impact  dynamics.  We  analyze  the  spreading  dynamics  and  splashing  criterion  of  an  impacting  droplet  on  a  layer  of  particles.  A  theoretical  model  is  developed  to  consider  the  momentum  of  the  spreading  liquid  and  the  time-dependent  distribution  of  particles.  Additionally,  we  establish  a  droplet  splashing  criterion  based  on  the  interaction  between  the  impacting  droplet  and  the  particles.  Our  results  provide  insight  into  how  the  presence  of  particles  lowers  the  critical  impact  velocity  at  which  a  droplet  exhibits  splashing,  as  the  particle  area  fraction  is  systematically  increased.We  then  focus  on  the  dynamics  of  a  partially-wetting  droplet  under  an  impinging  air  jet.  We  built  a  two-dimensional  lubrication  model  of  the  droplet  that  incorporates  the  external  pressure  of  the  impinging  turbulent  jet,  in  addition  to  the  capillary  and  hydrostatic  pressures  of  the  droplet.  Also,  the  simulations  of  the  contact-line  motion  by  using  precursor  film  and  disjoining  pressure  allows  us  to  capture  the  physics  of  different  droplet  behaviors,  which  had  previously  been  observed  experimentally.  Our  simulations  exhibit  a  comparable  time-scale  of  droplet  deformations  and  similar  outcomes  as  the  experimental  observations.  We  also  obtain  the  analytical  steady-state  solutions  of  the  droplet  shapes  and  construct  the  minimum  criteria  for  droplet  splitting  and  depinning.Lastly,  we  investigate  the  interfacial  dynamics  of  a  thin  liquid  film  over  an  undulating  solid  substrate.  To  explore  the  physical  mechanisms  of  free  surface  flows  driven  by  periodic  undulations,  we  developed  a  two-dimensional  thin-film  mathematical  model.  The  model  combines  the  effects  of  inertia,  viscosity,  gravity,  and  surface  tension  in  a  tractable  way.  Our  model  reveals  that  in  the  regime  where  gravity  dominates  over  surface  tension  (i.e.,  large  Bond  number,  Bo),  the  effects  of  surface  tension  drop  out  of  the  analysis,  allowing  the  flow  rate  to  only  depend  on  Re  and  Ca/Bo,  where  Ca  is  the  capillary  number.  In  this  same  regime,  we  learn  that  inertia  (Re)  tends  to  enhance  the  flow  rate,  while  increasing  Ca/Bo  reduces  the  flow  rate.
■590    ▼aSchool  code:  0130.
■650  4▼aFluid  mechanics.
■650  4▼aPhysics.
■650  4▼aEngineering.
■650  4▼aAerospace  engineering.
■650  4▼aMechanics.
■653    ▼aDroplets
■653    ▼aInterfacial  fluid  dynamics
■653    ▼aThin  films
■653    ▼aAir  jet
■690    ▼a0204
■690    ▼a0346
■690    ▼a0537
■690    ▼a0538
■690    ▼a0605
■71020▼aUniversity  of  Minnesota▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-01B.
■790    ▼a0130
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162228▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0031022 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치