본문

서브메뉴

Three Essays in Theoretical and Applied Spatial Econometrics.
Three Essays in Theoretical and Applied Spatial Econometrics.

상세정보

자료유형  
 학위논문
Control Number  
0017164943
International Standard Book Number  
9798384088677
Dewey Decimal Classification Number  
310
Main Entry-Personal Name  
Lin, Yanli.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Ohio State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
297 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Lee, Lung-fei;Weinberg, Bruce.
Dissertation Note  
Thesis (Ph.D.)--The Ohio State University, 2024.
Summary, Etc.  
요약Spatial autoregressive (SAR) models are an important way of modeling interactions between actors. My dissertation contains three chapters that extend these models in two ways. The first way is to generalize SAR models based on specific empirical needs. This includes developing models to accommodate an important feature - the multidimensionality of outcome variables. The traditional SAR models only deal with spatial dependence in univariate variables. An origin-destination flow, however, is characterized by the origin and the destination coupled with a direction and might be affected by both regions' characteristics. It also involves a three-dimensional structure in panel data. The nature of origin-destination flows calls for new analytical spatial models. Therefore, Chapter 1 considers a cross-sectional SAR model for origin-destination flows with two-way fixed effects, while Chapter 2 develops a spatial dynamic panel data model to capture dynamics of asymmetric directed flows and sets forth various fixed effects specifications to account for the unobserved heterogeneity in multi-indexed data.The second way is to derive simple yet novel estimation methods for SAR models, including one strand of econometric techniques that can incorporate the endogeneity of spatial weights and/or regressors. SAR models generally assume strict exogeneity of spatial weights and/or regressors that play key roles in estimation. Unfortunately, these assumptions are frequently violated in empirical studies, for instance, the spatial weights might be generated from socioeconomic characteristics that are correlated with the error term. The common control function approach requires correctly specifying the structure of the set of equations for endogenous variables, which can be challenging in applications. Hence, Chapter 3 proposes a new semiparametric copula endogeneity correction technique that overcomes the limitations of the control function approach.Chapter 1 extends LeSage and Pace (2008)'s spatial autoregressive model for origin-destination flows by accommodating two-way fixed effects. A partial likelihood approach is used for estimation by applying an orthogonal transformation to remove fixed effects in the model. The quasi-maximum likelihood (QML) estimator of the partial log-likelihood function is consistent and asymptotically centered normal. Monte Carlo experiments verify this advantage in finite samples. From the U.S. migration flows, significant spatial influences are captured with smaller magnitudes than those from the model without fixed effects.In Chapter 2, we introduce a higher-order spatial dynamic panel data (SDPD) model for a directed origin-destination flow outcome variable with the QML estimation method. The model can capture both the intra-temporal and inter-temporal spatial interactions among the origins, among the destinations, and from neighbors to the origins to neighbors of the destination. We extend the traditional symmetric bilateral design from traditional gravity models by allowing for an asymmetric origins and destinations structure to accommodate broader empirical needs in the studies of unidirectional flows, effects of flows from one selected direction, and/or the effects of net flows, etc. A variety of fixed effects specifications have been set forth to account for the three-dimensional nature and the unobserved heterogeneity of a flow variable in the panel data setting. A direct approach for directly estimating the fixed effects and a data transformation approach to remove the time-variant effects have been proposed. We establish the consistency and asymptotic distribution as well as the analytic bias correction procedure for the QML estimators. We then perform Monte Carlo experiments to investigate their finite sample performance. Moreover, by applying our model to study U.S. State-to-State migration flows from 1991 to 2019, we detect three channels of contemporaneous interactions, three channels of diffusion effects, and a moderate persistence in this type of directional flows.Chapter 3 provides a new semiparametric copula method to tackle the endogeneity issue in a SAR model, which might originate from an endogenous spatial weights matrix and/or endogenous regressors. In this study, a general model specification incorporating the two cases and multivariate modelings with Gaussian and Student's t copulas are presented. Using copula-based endogeneity correction techniques, we propose 3-stage estimation methods for SAR and establish their consistency and asymptotic normality. Monte Carlo experiments are performed to investigate the finite-sample performance of the instrumental variable (IV) estimator and the maximum likelihood (ML) estimator. We then apply our method to an empirical study of spatial spillovers in regional productivity with spatial weights determined by an endogenous socioeconomic factor - years of education that also serves as a linear regressor.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Applied mathematics.
Index Term-Uncontrolled  
Spatial autoregressive models
Index Term-Uncontrolled  
Maximum likelihood
Index Term-Uncontrolled  
Econometrics
Index Term-Uncontrolled  
Monte Carlo experiments
Index Term-Uncontrolled  
Spatial dynamic panel data
Added Entry-Corporate Name  
The Ohio State University Economics
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:653657

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164943
■00520250211153106
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384088677
■035    ▼a(MiAaPQ)AAI31674158
■035    ▼a(MiAaPQ)OhioLINKosu1712529518227017
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a310
■1001  ▼aLin,  Yanli.
■24510▼aThree  Essays  in  Theoretical  and  Applied  Spatial  Econometrics.
■260    ▼a[S.l.]▼bThe  Ohio  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a297  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Lee,  Lung-fei;Weinberg,  Bruce.
■5021  ▼aThesis  (Ph.D.)--The  Ohio  State  University,  2024.
■520    ▼aSpatial  autoregressive  (SAR)  models  are  an  important  way  of  modeling  interactions  between  actors.  My  dissertation  contains  three  chapters  that  extend  these  models  in  two  ways.  The  first  way  is  to  generalize  SAR  models  based  on  specific  empirical  needs.  This  includes  developing  models  to  accommodate  an  important  feature  -  the  multidimensionality  of  outcome  variables.  The  traditional  SAR  models  only  deal  with  spatial  dependence  in  univariate  variables.  An  origin-destination  flow,  however,  is  characterized  by  the  origin  and  the  destination  coupled  with  a  direction  and  might  be  affected  by  both  regions'  characteristics.  It  also  involves  a  three-dimensional  structure  in  panel  data.  The  nature  of  origin-destination  flows  calls  for  new  analytical  spatial  models.  Therefore,  Chapter  1  considers  a  cross-sectional  SAR  model  for  origin-destination  flows  with  two-way  fixed  effects,  while  Chapter  2  develops  a  spatial  dynamic  panel  data  model  to  capture  dynamics  of  asymmetric  directed  flows  and  sets  forth  various  fixed  effects  specifications  to  account  for  the  unobserved  heterogeneity  in  multi-indexed  data.The  second  way  is  to  derive  simple  yet  novel  estimation  methods  for  SAR  models,  including  one  strand  of  econometric  techniques  that  can  incorporate  the  endogeneity  of  spatial  weights  and/or  regressors.  SAR  models  generally  assume  strict  exogeneity  of  spatial  weights  and/or  regressors  that  play  key  roles  in  estimation.  Unfortunately,  these  assumptions  are  frequently  violated  in  empirical  studies,  for  instance,  the  spatial  weights  might  be  generated  from  socioeconomic  characteristics  that  are  correlated  with  the  error  term.  The  common  control  function  approach  requires  correctly  specifying  the  structure  of  the  set  of  equations  for  endogenous  variables,  which  can  be  challenging  in  applications.  Hence,  Chapter  3  proposes  a  new  semiparametric  copula  endogeneity  correction  technique  that  overcomes  the  limitations  of  the  control  function  approach.Chapter  1  extends  LeSage  and  Pace  (2008)'s  spatial  autoregressive  model  for  origin-destination  flows  by  accommodating  two-way  fixed  effects.  A  partial  likelihood  approach  is  used  for  estimation  by  applying  an  orthogonal  transformation  to  remove  fixed  effects  in  the  model.  The  quasi-maximum  likelihood  (QML)  estimator  of  the  partial  log-likelihood  function  is  consistent  and  asymptotically  centered  normal.  Monte  Carlo  experiments  verify  this  advantage  in  finite  samples.  From  the  U.S.  migration  flows,  significant  spatial  influences  are  captured  with  smaller  magnitudes  than  those  from  the  model  without  fixed  effects.In  Chapter  2,  we  introduce  a  higher-order  spatial  dynamic  panel  data  (SDPD)  model  for  a  directed  origin-destination  flow  outcome  variable  with  the  QML  estimation  method.  The  model  can  capture  both  the  intra-temporal  and  inter-temporal  spatial  interactions  among  the  origins,  among  the  destinations,  and  from  neighbors  to  the  origins  to  neighbors  of  the  destination.  We  extend  the  traditional  symmetric  bilateral  design  from  traditional  gravity  models  by  allowing  for  an  asymmetric  origins  and  destinations  structure  to  accommodate  broader  empirical  needs  in  the  studies  of  unidirectional  flows,  effects  of  flows  from  one  selected  direction,  and/or  the  effects  of  net  flows,  etc.  A  variety  of  fixed  effects  specifications  have  been  set  forth  to  account  for  the  three-dimensional  nature  and  the  unobserved  heterogeneity  of  a  flow  variable  in  the  panel  data  setting.  A  direct  approach  for  directly  estimating  the  fixed  effects  and  a  data  transformation  approach  to  remove  the  time-variant  effects  have  been  proposed.  We  establish  the  consistency  and  asymptotic  distribution  as  well  as  the  analytic  bias  correction  procedure  for  the  QML  estimators.  We  then  perform  Monte  Carlo  experiments  to  investigate  their  finite  sample  performance.  Moreover,  by  applying  our  model  to  study  U.S.  State-to-State  migration  flows  from  1991  to  2019,  we  detect  three  channels  of  contemporaneous  interactions,  three  channels  of  diffusion  effects,  and  a  moderate  persistence  in  this  type  of  directional  flows.Chapter  3  provides  a  new  semiparametric  copula  method  to  tackle  the  endogeneity  issue  in  a  SAR  model,  which  might  originate  from  an  endogenous  spatial  weights  matrix  and/or  endogenous  regressors.  In  this  study,  a  general  model  specification  incorporating  the  two  cases  and  multivariate  modelings  with  Gaussian  and  Student's  t  copulas  are  presented.  Using  copula-based  endogeneity  correction  techniques,  we  propose  3-stage  estimation  methods  for  SAR  and  establish  their  consistency  and  asymptotic  normality.  Monte  Carlo  experiments  are  performed  to  investigate  the  finite-sample  performance  of  the  instrumental  variable  (IV)  estimator  and  the  maximum  likelihood  (ML)  estimator.  We  then  apply  our  method  to  an  empirical  study  of  spatial  spillovers  in  regional  productivity  with  spatial  weights  determined  by  an  endogenous  socioeconomic  factor  -  years  of  education  that  also  serves  as  a  linear  regressor.
■590    ▼aSchool  code:  0168.
■650  4▼aStatistics.
■650  4▼aApplied  mathematics.
■653    ▼aSpatial  autoregressive  models
■653    ▼aMaximum  likelihood  
■653    ▼aEconometrics
■653    ▼aMonte  Carlo  experiments
■653    ▼aSpatial  dynamic  panel  data
■690    ▼a0501
■690    ▼a0511
■690    ▼a0364
■690    ▼a0463
■71020▼aThe  Ohio  State  University▼bEconomics.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0168
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164943▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0030029 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치