본문

서브메뉴

Protein Transport and Signaling Deficits at the Blood-Brain Barrier in Preclinical Models of Alzheimer's Disease and Metabolic Syndrome- [electronic resource]
Protein Transport and Signaling Deficits at the Blood-Brain Barrier in Preclinical Models of Alzheimer's Disease and Metabolic Syndrome- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934749
International Standard Book Number  
9798380391993
Dewey Decimal Classification Number  
616
Main Entry-Personal Name  
Zhou, Andrew.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Minnesota., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(197 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Kandimalla, Karunya K.
Dissertation Note  
Thesis (Ph.D.)--University of Minnesota, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Several major risk factors have emerged for Alzheimer's disease (AD), including advanced age and metabolic syndromes like cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Blood-brain barrier (BBB) dysfunction is a shared feature among these disorders and precedes the emergence of histopathological hallmarks and cognitive decline in AD patients. Endogenous proteins like apolipoprotein A-I (ApoA-I), insulin, and amyloid-β (Aβ) peptides are heavily implicated in AD, and play key roles in CVD, T2DM and cerebral amyloid angiopathy, respectively. However, the mechanisms governing the BBB transport and function of these key proteins are poorly understood. Further, it is unclear how these mechanisms are altered by major AD risk factors.My thesis seeks to identify key mechanisms governing the transport and function of ApoA-I, insulin and Aβ peptides at the BBB, under healthy conditions and in the presence of various AD risk factors that are associated with peripheral insulin resistance. This involved pharmacokinetic experiments using 125I radiolabeled proteins in rodent models representing various AD risk factors, alongside in vitro transport and signaling studies performed using an in vitro BBB cell model. Findings from Chp. 2 showed that the BBB plays a major role in ApoA-I brain delivery in rats, refuting a recent claim that blood-CSF barrier is the major portal for ApoA-I brain delivery. Findings from Chp. 3 showed that aging is associated with reduced insulin brain delivery and increased brain Aβ accumulation, which is expected to contribute to AD progression. Findings from Chp. 4 showed that insulin brain delivery is reduced in T2DM or AD mouse models compared to the healthy controls, with the lowest insulin brain delivery observed in mice that manifest. Further, these reductions in brain insulin delivery were associated with deficits in insulin signaling pathways at the BBB, based on western blots performed on brain microvessels harvested from the different mouse models.Findings from Chp. 5 provided a functional validation of the importance of insulin signaling pathways in regulating insulin and Aβ peptide transport at the BBB. In healthy mice, treatment with an insulin signaling inhibitor reduced brain insulin delivery and increased brain Aβ accumulation, recapitulating the trends observed in the mouse models of AD risk factors. This was supported by in vitro studies performed in BBB cell monolayers. Further, insulin uptake was reduced upon direct inhibition of the insulin receptor, but not by inhibition of either or both downstream signaling arms, specifically the PI3K/AKT and MAPK/ERK pathways. Additionally, the inhibitory effects of Aβ peptides on insulin uptake in the BBB cell monolayers were characterized.Finally, the mechanisms of action of two different potential approaches for reducing brain Aβ levels as a treatment for AD were explored. Findings from Chp. 6 showed the ApoA-I mimetic peptide 4F has substantially greater brain permeability compared to full-length ApoA-I in healthy mice. The 4F was further shown to beneficially modulate the transport of Aβ40 and Aβ42 peptides in healthy mice, which was confirmed using an in vitro BBB cell model. Findings from Chp. 7 showed that systemic treatment with an anti-Aβ monoclonal antibody led to sequestration of plasma Aβ and reduced brain Aβ accumulation in healthy mice. This offers mechanistic insight into the previously established "sink effect" of Aβ immunotherapies on brain Aβ clearance.Together, these findings provide novel mechanistic insights into how AD risk factors contribute to BBB dysfunction, and how therapeutic agents like ApoA-I mimetic peptides and Aβ immunotherapies could potentially be used to restore BBB function.
Subject Added Entry-Topical Term  
Pharmaceutical sciences.
Subject Added Entry-Topical Term  
Neurosciences.
Subject Added Entry-Topical Term  
Epidemiology.
Index Term-Uncontrolled  
Alzheimer's disease
Index Term-Uncontrolled  
Cardiovascular disease
Index Term-Uncontrolled  
Blood-brain barrier
Index Term-Uncontrolled  
Diabetes
Index Term-Uncontrolled  
Metabolic syndromes
Added Entry-Corporate Name  
University of Minnesota Pharmaceutics
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:644055

MARC

 008240221s2023        ulk                      00        kor
■001000016934749
■00520240214101649
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380391993
■035    ▼a(MiAaPQ)AAI30634038
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a616
■1001  ▼aZhou,  Andrew.
■24510▼aProtein  Transport  and  Signaling  Deficits  at  the  Blood-Brain  Barrier  in  Preclinical  Models  of  Alzheimer's  Disease  and  Metabolic  Syndrome▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Minnesota.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(197  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Kandimalla,  Karunya  K.
■5021  ▼aThesis  (Ph.D.)--University  of  Minnesota,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aSeveral  major  risk  factors  have  emerged  for  Alzheimer's  disease  (AD),  including  advanced  age  and  metabolic  syndromes  like  cardiovascular  disease  (CVD)  and  type  2  diabetes  mellitus  (T2DM).  Blood-brain  barrier  (BBB)  dysfunction  is  a  shared  feature  among  these  disorders  and  precedes  the  emergence  of  histopathological  hallmarks  and  cognitive  decline  in  AD  patients.  Endogenous  proteins  like  apolipoprotein  A-I  (ApoA-I),  insulin,  and  amyloid-β  (Aβ)  peptides  are  heavily  implicated  in  AD,  and  play  key  roles  in  CVD,  T2DM  and  cerebral  amyloid  angiopathy,  respectively.  However,  the  mechanisms  governing  the  BBB  transport  and  function  of  these  key  proteins  are  poorly  understood.  Further,  it  is  unclear  how  these  mechanisms  are  altered  by  major  AD  risk  factors.My  thesis  seeks  to  identify  key  mechanisms  governing  the  transport  and  function  of  ApoA-I,  insulin  and  Aβ  peptides  at  the  BBB,  under  healthy  conditions  and  in  the  presence  of  various  AD  risk  factors  that  are  associated  with  peripheral  insulin  resistance.  This  involved  pharmacokinetic  experiments  using  125I  radiolabeled  proteins  in  rodent  models  representing  various  AD  risk  factors,  alongside  in  vitro  transport  and  signaling  studies  performed  using  an  in  vitro  BBB  cell  model.  Findings  from  Chp.  2  showed  that  the  BBB  plays  a  major  role  in  ApoA-I  brain  delivery  in  rats,  refuting  a  recent  claim  that  blood-CSF  barrier  is  the  major  portal  for  ApoA-I  brain  delivery.  Findings  from  Chp.  3  showed  that  aging  is  associated  with  reduced  insulin  brain  delivery  and  increased  brain  Aβ  accumulation,  which  is  expected  to  contribute  to  AD  progression.  Findings  from  Chp.  4  showed  that  insulin  brain  delivery  is  reduced  in  T2DM  or  AD  mouse  models  compared  to  the  healthy  controls,  with  the  lowest  insulin  brain  delivery  observed  in  mice  that  manifest.  Further,  these  reductions  in  brain  insulin  delivery  were  associated  with  deficits  in  insulin  signaling  pathways  at  the  BBB,  based  on  western  blots  performed  on  brain  microvessels  harvested  from  the  different  mouse  models.Findings  from  Chp.  5  provided  a  functional  validation  of  the  importance  of  insulin  signaling  pathways  in  regulating  insulin  and  Aβ  peptide  transport  at  the  BBB.  In  healthy  mice,  treatment  with  an  insulin  signaling  inhibitor  reduced  brain  insulin  delivery  and  increased  brain  Aβ  accumulation,  recapitulating  the  trends  observed  in  the  mouse  models  of  AD  risk  factors.  This  was  supported  by  in  vitro  studies  performed  in  BBB  cell  monolayers.  Further,  insulin  uptake  was  reduced  upon  direct  inhibition  of  the  insulin  receptor,  but  not  by  inhibition  of  either  or  both  downstream  signaling  arms,  specifically  the  PI3K/AKT  and  MAPK/ERK  pathways.  Additionally,  the  inhibitory  effects  of  Aβ  peptides  on  insulin  uptake  in  the  BBB  cell  monolayers  were  characterized.Finally,  the  mechanisms  of  action  of  two  different  potential  approaches  for  reducing  brain  Aβ  levels  as  a  treatment  for  AD  were  explored.  Findings  from  Chp.  6  showed  the  ApoA-I  mimetic  peptide  4F  has  substantially  greater  brain  permeability  compared  to  full-length  ApoA-I  in  healthy  mice.  The  4F  was  further  shown  to  beneficially  modulate  the  transport  of  Aβ40  and  Aβ42  peptides  in  healthy  mice,  which  was  confirmed  using  an  in  vitro  BBB  cell  model.  Findings  from  Chp.  7  showed  that  systemic  treatment  with  an  anti-Aβ  monoclonal  antibody  led  to  sequestration  of  plasma  Aβ  and  reduced  brain  Aβ  accumulation  in  healthy  mice.  This  offers  mechanistic  insight  into  the  previously  established  "sink  effect"  of  Aβ  immunotherapies  on  brain  Aβ  clearance.Together,  these  findings  provide  novel  mechanistic  insights  into  how  AD  risk  factors  contribute  to  BBB  dysfunction,  and  how  therapeutic  agents  like  ApoA-I  mimetic  peptides  and  Aβ  immunotherapies  could  potentially  be  used  to  restore  BBB  function.
■590    ▼aSchool  code:  0130.
■650  4▼aPharmaceutical  sciences.
■650  4▼aNeurosciences.
■650  4▼aEpidemiology.
■653    ▼aAlzheimer's  disease
■653    ▼aCardiovascular  disease
■653    ▼aBlood-brain  barrier
■653    ▼aDiabetes
■653    ▼aMetabolic  syndromes
■690    ▼a0572
■690    ▼a0317
■690    ▼a0766
■71020▼aUniversity  of  Minnesota▼bPharmaceutics.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0130
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934749▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0029958 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치