본문

서브메뉴

Distributed Estimation for Formation Flying Spacecraft- [electronic resource]
Distributed Estimation for Formation Flying Spacecraft- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935856
International Standard Book Number  
9798380828710
Dewey Decimal Classification Number  
629.1
Main Entry-Personal Name  
Prabhu, Kaushik.
Publication, Distribution, etc. (Imprint  
[S.l.] : Texas A&M University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(142 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
General Note  
Advisor: Alfriend, Kyle T.
Dissertation Note  
Thesis (Ph.D.)--Texas A&M University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Formation flying is a critical technology for future space missions. Distributed estimation architectures will play a key role in achieving multi-spacecraft mission objectives. In the distributed framework, each spacecraft has access only to its local measurement data and the goal is to perform collaborative estimation via information exchange with the neighboring spacecraft. This dissertation develops two types of estimation algorithms, namely, a distributed batch filter for static parameter estimation and a distributed real-time filter for dynamic state estimation. The Least Squares (LS) technique is a popular approach for batch filtering. This method finds the solution of an overdetermined system of linear equations by minimizing the sum of squares of the residuals. While the LS estimator is known to be optimal for Gaussian measurement errors, its performance degrades in the presence of gross errors (outliers) in the measurements. The Least Absolute Deviations (LAD) technique, on the other hand, finds the solution that minimizes the sum of absolute values of the residuals and is known to be robust to measurement outliers. In this dissertation, we begin by formulating a linear programming-based solution to the LAD estimation problem. The LAD solution for linear systems is implemented in a nonlinear framework to solve an orbit determination problem. Further, an estimate of the error covariance matrix for the LAD estimates is also derived. For applications in multi-agent systems, a distributed form of the LAD estimator is formulated. In the Distributed (D-) LAD algorithm, individual agents utilize local measurement data and iteratively exchange information with their immediate neighbors via single-hop communications to collaboratively compute the LAD estimate. The distributed algorithm retains the robustness properties of the central LAD estimator. The D-LAD solution for linear systems is implemented in a nonlinear framework to solve the problem of distributed orbit determination of a target body using a formation of spacecraft. For distributed real-time filtering, the problem of autonomous inertial localization of spacecraft formations is considered. In the case of large formation sizes, each spacecraft may not be able to track or communicate with all other spacecraft. Further, for formations deployed in deep space, the unavailability of the Global Navigation Satellite System makes inertial state estimation challenging. We propose the Distributed Absolute and Relative Estimation (DARE) algorithm for autonomous inertial estimation of spacecraft formations. The algorithm enables each spacecraft to maintain an accurate inertial estimate of the entire formation even in the presence of observability and communication constraints. A modified version of the algorithm called the Sparse (S-) DARE algorithm is also derived. This algorithm is computationally more efficient at the expense of estimation accuracy making it suitable for implementation on nano-satellites where resources are limited.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Astrophysics.
Subject Added Entry-Topical Term  
Mechanical engineering.
Index Term-Uncontrolled  
Distributed estimation
Index Term-Uncontrolled  
Spacecraft formation flying
Index Term-Uncontrolled  
Least Absolute Deviations
Index Term-Uncontrolled  
Gross errors
Added Entry-Corporate Name  
Texas A&M University Aerospace Engineering
Host Item Entry  
Dissertations Abstracts International. 85-05B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643984

MARC

 008240221s2023        ulk                      00        kor
■001000016935856
■00520240214102029
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380828710
■035    ▼a(MiAaPQ)AAI30872941
■035    ▼a(MiAaPQ)0803vireo28193Prabhu
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a629.1
■1001  ▼aPrabhu,  Kaushik.
■24510▼aDistributed  Estimation  for  Formation  Flying  Spacecraft▼h[electronic  resource]
■260    ▼a[S.l.]▼bTexas  A&M  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(142  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-05,  Section:  B.
■500    ▼aAdvisor:  Alfriend,  Kyle  T.
■5021  ▼aThesis  (Ph.D.)--Texas  A&M  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aFormation  flying  is  a  critical  technology  for  future  space  missions.  Distributed  estimation  architectures  will  play  a  key  role  in  achieving  multi-spacecraft  mission  objectives.  In  the  distributed  framework,  each  spacecraft  has  access  only  to  its  local  measurement  data  and  the  goal  is  to  perform  collaborative  estimation  via  information  exchange  with  the  neighboring  spacecraft.  This  dissertation  develops  two  types  of  estimation  algorithms,  namely,  a  distributed  batch  filter  for  static  parameter  estimation  and  a  distributed  real-time  filter  for  dynamic  state  estimation.  The  Least  Squares  (LS)  technique  is  a  popular  approach  for  batch  filtering.  This  method  finds  the  solution  of  an  overdetermined  system  of  linear  equations  by  minimizing  the  sum  of  squares  of  the  residuals.  While  the  LS  estimator  is  known  to  be  optimal  for  Gaussian  measurement  errors,  its  performance  degrades  in  the  presence  of  gross  errors  (outliers)  in  the  measurements.  The  Least  Absolute  Deviations  (LAD)  technique,  on  the  other  hand,  finds  the  solution  that  minimizes  the  sum  of  absolute  values  of  the  residuals  and  is  known  to  be  robust  to  measurement  outliers.  In  this  dissertation,  we  begin  by  formulating  a  linear  programming-based  solution  to  the  LAD  estimation  problem.  The  LAD  solution  for  linear  systems  is  implemented  in  a  nonlinear  framework  to  solve  an  orbit  determination  problem.  Further,  an  estimate  of  the  error  covariance  matrix  for  the  LAD  estimates  is  also  derived.  For  applications  in  multi-agent  systems,  a  distributed  form  of  the  LAD  estimator  is  formulated.  In  the  Distributed  (D-)  LAD  algorithm,  individual  agents  utilize  local  measurement  data  and  iteratively  exchange  information  with  their  immediate  neighbors  via  single-hop  communications  to  collaboratively  compute  the  LAD  estimate.  The  distributed  algorithm  retains  the  robustness  properties  of  the  central  LAD  estimator.  The  D-LAD  solution  for  linear  systems  is  implemented  in  a  nonlinear  framework  to  solve  the  problem  of  distributed  orbit  determination  of  a  target  body  using  a  formation  of  spacecraft.  For  distributed  real-time  filtering,  the  problem  of  autonomous  inertial  localization  of  spacecraft  formations  is  considered.  In  the  case  of  large  formation  sizes,  each  spacecraft  may  not  be  able  to  track  or  communicate  with  all  other  spacecraft.  Further,  for  formations  deployed  in  deep  space,  the  unavailability  of  the  Global  Navigation  Satellite  System  makes  inertial  state  estimation  challenging.  We  propose  the  Distributed  Absolute  and  Relative  Estimation  (DARE)  algorithm  for  autonomous  inertial  estimation  of  spacecraft  formations.  The  algorithm  enables  each  spacecraft  to  maintain  an  accurate  inertial  estimate  of  the  entire  formation  even  in  the  presence  of  observability  and  communication  constraints.  A  modified  version  of  the  algorithm  called  the  Sparse  (S-)  DARE  algorithm  is  also  derived.  This  algorithm  is  computationally  more  efficient  at  the  expense  of  estimation  accuracy  making  it  suitable  for  implementation  on  nano-satellites  where  resources  are  limited.
■590    ▼aSchool  code:  0803.
■650  4▼aAerospace  engineering.
■650  4▼aAstrophysics.
■650  4▼aMechanical  engineering.
■653    ▼aDistributed  estimation
■653    ▼aSpacecraft  formation  flying
■653    ▼aLeast  Absolute  Deviations
■653    ▼aGross  errors
■690    ▼a0538
■690    ▼a0596
■690    ▼a0548
■71020▼aTexas  A&M  University▼bAerospace  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-05B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0803
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935856▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0029888 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치