본문

서브메뉴

Development of Thermally-Stable and Reflection-Insensitive Quantum Dot Lasers for LiDAR- [electronic resource]
Development of Thermally-Stable and Reflection-Insensitive Quantum Dot Lasers for LiDAR- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935818
International Standard Book Number  
9798380596442
Dewey Decimal Classification Number  
620.5
Main Entry-Personal Name  
Arefn, Riazul.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Ohio State University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(176 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Arafn, Shamsul.
Dissertation Note  
Thesis (Ph.D.)--The Ohio State University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The objective of this thesis is to create highly efective light emitters for LiDAR technology by utilizing gain materials that are based on semiconductor quantum dots (QDs). The primary component of LiDAR technology is the light source, which is typically a laser. In order to function efectively under various conditions and with optimal efciency, the laser must meet specifc criteria: it should be safe for the eyes, provide high output power, exhibit thermal stability, and be insensitive to back-refections. QD materials possess advantageous properties such as three-dimensional carrier confnement and atom-like gain, resulting in discrete density of states. These properties contribute to an ultralow linewidth enhancement factor 'α', leading to improved thermal stability, reduced sensitivity to back-refection, narrow spectral linewidth, and low-chirp characteristics under modulation.This study focuses on the development of a light source using diode lasers for two specifc LiDAR wavelengths: 905 nm and 1.55 µm. The choice of these wavelengths is based on their respective advantages. The 905 nm wavelength has the lowest absorption in the atmosphere, making it an excellent option for topographic LiDARs used in navigation and environmental sensing. On the other hand, the 1.55 µm wavelength is considered eye-safe because it is blocked by retinal water and protects the cornea from potential damage. The 905 nm emitting QDs are based on the GaAs material platform, while the 1.55 µm wavelength utilizes InP-based materials. The work conducted in this thesis starts with material design and progresses to optimizing growth conditions to achieve high-density and uniform QD ensembles. Subsequently, these QDs are implemented into the epitaxial structure of diode lasers, which are then fabricated and characterized to ensure thermal stability and insensitivity to back-refection.The wavelength regime commonly referred to as the 'Telecom band' centered at 1.55 µm has well-established growth technology for QDs, exhibiting a remarkably low full-width at half maximum (FWHM) of 17 meV, which indicates a high level of uniformity. This research presents the development of QD laser diodes that achieves a moderately high output power exceeding 100 mW, demonstrating excellent thermal stability with wavelength coefcient of less than 0.4 nm/K in the temperature range of 0-80°C. Furthermore, the laser exhibits a high characteristic temperature (T0) of 100 K. A comprehensive comparison is conducted between the QD-based materials and similar materials based on quantum wells (QWs) in terms of their optoelectronic properties. The design and fabrication processes are optimized to produce diode lasers that operate in true single mode, making them suitable for practical applications.The wavelength of 905 nm is not widely explored in the QD research community. In this study, we investigated the growth of QDs on a novel InAlGaAs-based quaternary material system. Various growth conditions were employed to manipulate the morphology and composition of the QDs. Our research reveals a wide tuning range of 700 nm to 1.1 µm for the growth window of these QDs. The impact of ex-situ thermal annealing was extensively examined, and it was discovered that the material quality signifcantly improved with the application of annealing. Subsequently, the optimized materials were incorporated into the active region of diode lasers, and diagnostic lasers were fabricated and tested. The results from these experiments were used to further optimize and fne-tune the growth conditions of the materials to achieve the desired emission wavelength and superior optoelectronic performance. Additionally, new strategies were developed to create single-mode lasers. This work establishes a fundamental basis for selecting laser materials suitable for LiDAR technology applications.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Nanoscience.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Quantum dots
Index Term-Uncontrolled  
Diode lasers
Index Term-Uncontrolled  
Epitaxy
Index Term-Uncontrolled  
Characteristic temperature
Index Term-Uncontrolled  
Threshold current
Index Term-Uncontrolled  
Rapid thermal annealing
Added Entry-Corporate Name  
The Ohio State University Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643966

MARC

 008240221s2023        ulk                      00        kor
■001000016935818
■00520240214102023
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380596442
■035    ▼a(MiAaPQ)AAI30788395
■035    ▼a(MiAaPQ)OhioLINKosu1689920874057965
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.5
■1001  ▼aArefn,  Riazul.
■24510▼aDevelopment  of  Thermally-Stable  and  Reflection-Insensitive  Quantum  Dot  Lasers  for  LiDAR▼h[electronic  resource]
■260    ▼a[S.l.]▼bThe  Ohio  State  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(176  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  Arafn,  Shamsul.
■5021  ▼aThesis  (Ph.D.)--The  Ohio  State  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  objective  of  this  thesis  is  to  create  highly  efective  light  emitters  for  LiDAR  technology  by  utilizing  gain  materials  that  are  based  on  semiconductor  quantum  dots  (QDs).  The  primary  component  of  LiDAR  technology  is  the  light  source,  which  is  typically  a  laser.  In  order  to  function  efectively  under  various  conditions  and  with  optimal  efciency,  the  laser  must  meet  specifc  criteria:  it  should  be  safe  for  the  eyes,  provide  high  output  power,  exhibit  thermal  stability,  and  be  insensitive  to  back-refections.  QD  materials  possess  advantageous  properties  such  as  three-dimensional  carrier  confnement  and  atom-like  gain,  resulting  in  discrete  density  of  states.  These  properties  contribute  to  an  ultralow  linewidth  enhancement  factor  'α',  leading  to  improved  thermal  stability,  reduced  sensitivity  to  back-refection,  narrow  spectral  linewidth,  and  low-chirp  characteristics  under  modulation.This  study  focuses  on  the  development  of  a  light  source  using  diode  lasers  for  two  specifc  LiDAR  wavelengths:  905  nm  and  1.55  µm.  The  choice  of  these  wavelengths  is  based  on  their  respective  advantages.  The  905  nm  wavelength  has  the  lowest  absorption  in  the  atmosphere,  making  it  an  excellent  option  for  topographic  LiDARs  used  in  navigation  and  environmental  sensing.  On  the  other  hand,  the  1.55  µm  wavelength  is  considered  eye-safe  because  it  is  blocked  by  retinal  water  and  protects  the  cornea  from  potential  damage.  The  905  nm  emitting  QDs  are  based  on  the  GaAs  material  platform,  while  the  1.55  µm  wavelength  utilizes  InP-based  materials.  The  work  conducted  in  this  thesis  starts  with  material  design  and  progresses  to  optimizing  growth  conditions  to  achieve  high-density  and  uniform  QD  ensembles.  Subsequently,  these  QDs  are  implemented  into  the  epitaxial  structure  of  diode  lasers,  which  are  then  fabricated  and  characterized  to  ensure  thermal  stability  and  insensitivity  to  back-refection.The  wavelength  regime  commonly  referred  to  as  the  'Telecom  band'  centered  at  1.55  µm  has  well-established  growth  technology  for  QDs,  exhibiting  a  remarkably  low  full-width  at  half  maximum  (FWHM)  of  17  meV,  which  indicates  a  high  level  of  uniformity.  This  research  presents  the  development  of  QD  laser  diodes  that  achieves  a  moderately  high  output  power  exceeding  100  mW,  demonstrating  excellent  thermal  stability  with  wavelength  coefcient  of  less  than  0.4  nm/K  in  the  temperature  range  of  0-80°C.  Furthermore,  the  laser  exhibits  a  high  characteristic  temperature  (T0)  of  100  K.  A  comprehensive  comparison  is  conducted  between  the  QD-based  materials  and  similar  materials  based  on  quantum  wells  (QWs)  in  terms  of  their  optoelectronic  properties.  The  design  and  fabrication  processes  are  optimized  to  produce  diode  lasers  that  operate  in  true  single  mode,  making  them  suitable  for  practical  applications.The  wavelength  of  905  nm  is  not  widely  explored  in  the  QD  research  community.  In  this  study,  we  investigated  the  growth  of  QDs  on  a  novel  InAlGaAs-based  quaternary  material  system.  Various  growth  conditions  were  employed  to  manipulate  the  morphology  and  composition  of  the  QDs.  Our  research  reveals  a  wide  tuning  range  of  700  nm  to  1.1  µm  for  the  growth  window  of  these  QDs.  The  impact  of  ex-situ  thermal  annealing  was  extensively  examined,  and  it  was  discovered  that  the  material  quality  signifcantly  improved  with  the  application  of  annealing.  Subsequently,  the  optimized  materials  were  incorporated  into  the  active  region  of  diode  lasers,  and  diagnostic  lasers  were  fabricated  and  tested.  The  results  from  these  experiments  were  used  to  further  optimize  and  fne-tune  the  growth  conditions  of  the  materials  to  achieve  the  desired  emission  wavelength  and  superior  optoelectronic  performance.  Additionally,  new  strategies  were  developed  to  create  single-mode  lasers.  This  work  establishes  a  fundamental  basis  for  selecting  laser  materials  suitable  for  LiDAR  technology  applications.
■590    ▼aSchool  code:  0168.
■650  4▼aNanotechnology.
■650  4▼aNanoscience.
■650  4▼aEngineering.
■650  4▼aElectrical  engineering.
■653    ▼aQuantum  dots
■653    ▼aDiode  lasers
■653    ▼aEpitaxy
■653    ▼aCharacteristic  temperature
■653    ▼aThreshold  current
■653    ▼aRapid  thermal  annealing
■690    ▼a0652
■690    ▼a0565
■690    ▼a0544
■690    ▼a0537
■71020▼aThe  Ohio  State  University▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0168
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935818▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0029870 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치