본문

서브메뉴

Advanced Synthetic Routes to Chemically Recyclable Polyacetals- [electronic resource]
내용보기
Advanced Synthetic Routes to Chemically Recyclable Polyacetals- [electronic resource]
자료유형  
 학위논문
Control Number  
0016933839
International Standard Book Number  
9798380317610
Dewey Decimal Classification Number  
547
Main Entry-Personal Name  
Hester, Holley Grace.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(142 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Coates, Geoffrey.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Polyacetals have emerged as a promising class of chemically recyclable materials, thanks to their high thermal stability and capability to undergo triggered depolymerization with a strong acid catalyst. Addressing the global plastic waste crisis requires innovative solutions, and polymers capable of efficient depolymerization to monomers offer a viable closed-loop approach. These polymers facilitate material value retention, reduce the environmental impacts of conventional plastics, and promote a circular economy. In contribution to the development of a closed-loop polymer economy, this work presents new synthetic routes for high-performance polyacetals, specifically poly(1,3-dioxolane), (pDXL), through environmentally friendly and accessible polymerization systems.First, a polymerization system capable of synthesizing ultra-high-molecular-weight (UHMW) pDXL is presented, yielding a chemically recyclable thermoplastic material with impressive mechanical properties. The approach employs cost-effective, nonmetal triethyloxonium salt initiators and a proton trap to achieve UHMW pDXL with molecular weights exceeding 1000 kDa. UHMW pDXL showcases superior mechanical properties in comparison to lower molecular weight counterparts and outperforms ultra-high-molecular-weight polyethylene (UHMWPE) in ultimate stress. The polymerization system provides molecular weight control, making chemically recyclable pDXL of targeted molecular weights accessible without requiring toxic or expensive components. The robust mechanical properties of UHMW pDXL offer an incentive to replace existing commodity plastics with a chemically recyclable alternative. Additionally, the profound enhancement of polymer properties by increasing polymer molecular weight provides a valuable future approach for improving the performance of other sustainable polymers.Following the development of UHMW pDXL, a reversible-deactivation cationic ring-opening polymerization (RD-CROP) of DXL using earth-abundant and affordable halophilic zinc Lewis acids is reported. The Coates group previously reported the RD-CROP of acetals employing indium catalysts; however, indium's scarcity and cost discouraged further development. In this work, RD-CROP with accessible and economical catalytic systems is developed. Four commercially available zinc complexes successfully demonstrated the polymerization of DXL with methoxymethyl halide initiators. This methodology enabled the preparation of pDXL with substoichiometric loadings of ZnCl2, the first example of RD-CROP of dioxolane with catalytic amounts of halophilic Lewis acid. Overall, this dissertation contributes to the development of sustainable polyacetals and their polymerization methods, advancing the field of chemically recyclable materials.
Subject Added Entry-Topical Term  
Organic chemistry.
Subject Added Entry-Topical Term  
Polymer chemistry.
Subject Added Entry-Topical Term  
Materials science.
Index Term-Uncontrolled  
Chemical recycling
Index Term-Uncontrolled  
Circular economy
Index Term-Uncontrolled  
Polyacetal
Index Term-Uncontrolled  
Polydioxolane
Index Term-Uncontrolled  
Polymer
Index Term-Uncontrolled  
Sustainable
Added Entry-Corporate Name  
Cornell University Chemistry and Chemical Biology
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643961
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0029864 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치