본문

서브메뉴

Towards Ai-Driven Networks: Hardware and Software for Data-Plane Ml- [electronic resource]
Towards Ai-Driven Networks: Hardware and Software for Data-Plane Ml- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933795
International Standard Book Number  
9798380319621
Dewey Decimal Classification Number  
005
Main Entry-Personal Name  
Swamy, Tushar.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(141 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Shahbaz, Muhammad;Winstein, Keith.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Network management is an increasingly difficult task for researchers and industry alike. Networks are growing rapidly in both scale and complexity. They now have to cater to a bigger application set and a larger user base than ever before while adhering to more and more stringent performance requirements. With so many challenges to running a network, operators must move beyond the era of hand-tuned algorithms and instead, adopt more automated approaches-i.e. AI-driven networks. In the search for more versatile tools in networks, many researchers have looked to machine learning (ML) as a vehicle for data-driven, adaptive mechanisms in networking systems. However, a number of pragmatic issues have plagued such development. Can we run ML in the packet path? Must operators build each new ML model by hand? How can we incorporate new data?In this dissertation, we show the construction of integral components required to build AI-driven networks. We first describe the design of Taurus, a platform to enable data-plane ML to run in the packet path of the network with a per-packet granularity, at line-rate. Furthermore, we demonstrate that the hardware for Taurus adds minimal overhead-less than 4% chip area and less than 3% power in our prototype. Next, we discuss Homunculus, a compiler stack for data-plane ML platforms (like Taurus) that allows for the automatic generation of resource and performance compliant ML models which outperform hand-tuned models by up to 16.9% in our tests. Finally, we show how these tools can be assembled to enable an adaptive ML loop in a network. Online labelling of raw data in the network can feed Homunculus, enabling the network to build new ML models from its own packet data. These models can then deploy learned policies in Taurus, setting the groundwork for upcoming AI-driven networks.
Subject Added Entry-Topical Term  
Operating systems.
Subject Added Entry-Topical Term  
Programming languages.
Subject Added Entry-Topical Term  
Deep learning.
Subject Added Entry-Topical Term  
Open source software.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Labeling.
Subject Added Entry-Topical Term  
Flexibility.
Subject Added Entry-Topical Term  
Software upgrading.
Subject Added Entry-Topical Term  
Computer science.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643953

MARC

 008240221s2023        ulk                      00        kor
■001000016933795
■00520240214101338
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380319621
■035    ▼a(MiAaPQ)AAI30561727
■035    ▼a(MiAaPQ)STANFORDyk907xh7589
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a005
■1001  ▼aSwamy,  Tushar.
■24510▼aTowards  Ai-Driven  Networks:  Hardware  and  Software  for  Data-Plane  Ml▼h[electronic  resource]
■260    ▼a[S.l.]▼bStanford  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(141  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Shahbaz,  Muhammad;Winstein,  Keith.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aNetwork  management  is  an  increasingly  difficult  task  for  researchers  and  industry  alike.  Networks  are  growing  rapidly  in  both  scale  and  complexity.  They  now  have  to  cater  to  a  bigger  application  set  and  a  larger  user  base  than  ever  before  while  adhering  to  more  and  more  stringent  performance  requirements.  With  so  many  challenges  to  running  a  network,  operators  must  move  beyond  the  era  of  hand-tuned  algorithms  and  instead,  adopt  more  automated  approaches-i.e.  AI-driven  networks.  In  the  search  for  more  versatile  tools  in  networks,  many  researchers  have  looked  to  machine  learning  (ML)  as  a  vehicle  for  data-driven,  adaptive  mechanisms  in  networking  systems.  However,  a  number  of  pragmatic  issues  have  plagued  such  development.  Can  we  run  ML  in  the  packet  path?  Must  operators  build  each  new  ML  model  by  hand?  How  can  we  incorporate  new  data?In  this  dissertation,  we  show  the  construction  of  integral  components  required  to  build  AI-driven  networks.  We  first  describe  the  design  of  Taurus,  a  platform  to  enable  data-plane  ML  to  run  in  the  packet  path  of  the  network  with  a  per-packet  granularity,  at  line-rate.  Furthermore,  we  demonstrate  that  the  hardware  for  Taurus  adds  minimal  overhead-less  than  4%  chip  area  and  less  than  3%  power  in  our  prototype.  Next,  we  discuss  Homunculus,  a  compiler  stack  for  data-plane  ML  platforms  (like  Taurus)  that  allows  for  the  automatic  generation  of  resource  and  performance  compliant  ML  models  which  outperform  hand-tuned  models  by  up  to  16.9%  in  our  tests.  Finally,  we  show  how  these  tools  can  be  assembled  to  enable  an  adaptive  ML  loop  in  a  network.  Online  labelling  of  raw  data  in  the  network  can  feed  Homunculus,  enabling  the  network  to  build  new  ML  models  from  its  own  packet  data.  These  models  can  then  deploy  learned  policies  in  Taurus,  setting  the  groundwork  for  upcoming  AI-driven  networks.
■590    ▼aSchool  code:  0212.
■650  4▼aOperating  systems.
■650  4▼aProgramming  languages.
■650  4▼aDeep  learning.
■650  4▼aOpen  source  software.
■650  4▼aNeural  networks.
■650  4▼aLabeling.
■650  4▼aFlexibility.
■650  4▼aSoftware  upgrading.
■650  4▼aComputer  science.
■690    ▼a0800
■690    ▼a0984
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933795▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0029856 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치