본문

서브메뉴

Improving Acute Ischemic Stroke Diagnosis Using Medical Imaging and Deep Learning Methods- [electronic resource]
Improving Acute Ischemic Stroke Diagnosis Using Medical Imaging and Deep Learning Methods- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932972
International Standard Book Number  
9798379610869
Dewey Decimal Classification Number  
616
Main Entry-Personal Name  
Zhang, Haoyue.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Los Angeles., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(157 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Arnold, Corey W.
Dissertation Note  
Thesis (Ph.D.)--University of California, Los Angeles, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Acute ischemic stroke (AIS) is a cerebrovascular disease caused by deceased blood flow in the brain. Treatment of AIS is heavily dependent on the time since stroke onset (TSS), either by clock time or tissue time. AIS treatments aim to restore blood flow in the stroke-affected area to minimize infarction. Current clinical guidelines recommend thrombolytic therapies (e.g. Intravenous(IV) or Intra-arterial (IA) tissue Plasminogen Activator (tPA) for patients presenting within 4.5 hours of TSS and Mechanical Thrombectomy (MTB) (e.g. surgical removal of the clot) for patients with TSS up to 24 hours. This research attempts to use both CT and MRI to predict the eligibility of AIS patients and their response to treatment while addressing several challenges in neuroimaging and AIS diagnosis in clinical settings using novel machine learning and deep learning approaches. A Self-supervised Learning approach, called intra-domain task-adaptive transfer learning, is the first proposed to predict TSS using limited training data. A hybrid transformer model that utilizes spatial neighborhood information in brain regions is proposed to predict MTB success. A pure transformer and a specifically designed Masked Image Model are developed to predict Large Vessel Occlusion (LVO). Last, a transformer-based super-resolution framework is proposed to generate synthesized thin-slice images from thick-slice images. Together, these models demonstrate the effectiveness of the attention mechanism and the usefulness of self-supervised learning for clinical deep learning applications given the limited data resources compared to natural images.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Biomedical engineering.
Index Term-Uncontrolled  
Computer vision
Index Term-Uncontrolled  
Deep learning
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Acute ischemic stroke
Index Term-Uncontrolled  
Time since stroke onset
Index Term-Uncontrolled  
Mechanical Thrombectomy
Added Entry-Corporate Name  
University of California, Los Angeles Bioengineering 0288
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643871

MARC

 008240221s2023        ulk                      00        kor
■001000016932972
■00520240214101147
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379610869
■035    ▼a(MiAaPQ)AAI30522634
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a616
■1001  ▼aZhang,  Haoyue.
■24510▼aImproving  Acute  Ischemic  Stroke  Diagnosis  Using  Medical  Imaging  and  Deep  Learning  Methods▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Los  Angeles.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(157  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Arnold,  Corey  W.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Los  Angeles,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aAcute  ischemic  stroke  (AIS)  is  a  cerebrovascular  disease  caused  by  deceased  blood  flow  in  the  brain.  Treatment  of  AIS  is  heavily  dependent  on  the  time  since  stroke  onset  (TSS),  either  by  clock  time  or  tissue  time.  AIS  treatments  aim  to  restore  blood  flow  in  the  stroke-affected  area  to  minimize  infarction.  Current  clinical  guidelines  recommend  thrombolytic  therapies  (e.g.  Intravenous(IV)  or  Intra-arterial  (IA)  tissue  Plasminogen  Activator  (tPA)  for  patients  presenting  within  4.5  hours  of  TSS  and  Mechanical  Thrombectomy  (MTB)  (e.g.  surgical  removal  of  the  clot)  for  patients  with  TSS  up  to  24  hours.  This  research  attempts  to  use  both  CT  and  MRI  to  predict  the  eligibility  of  AIS  patients  and  their  response  to  treatment  while  addressing  several  challenges  in  neuroimaging  and  AIS  diagnosis  in  clinical  settings  using  novel  machine  learning  and  deep  learning  approaches.  A  Self-supervised  Learning  approach,  called  intra-domain  task-adaptive  transfer  learning,  is  the  first  proposed  to  predict  TSS  using  limited  training  data.  A  hybrid  transformer  model  that  utilizes  spatial  neighborhood  information  in  brain  regions  is  proposed  to  predict  MTB  success.  A  pure  transformer  and  a  specifically  designed  Masked  Image  Model  are  developed  to  predict  Large  Vessel  Occlusion  (LVO).  Last,  a  transformer-based  super-resolution  framework  is  proposed  to  generate  synthesized  thin-slice  images  from  thick-slice  images.  Together,  these  models  demonstrate  the  effectiveness  of  the  attention  mechanism  and  the  usefulness  of  self-supervised  learning  for  clinical  deep  learning  applications  given  the  limited  data  resources  compared  to  natural  images.
■590    ▼aSchool  code:  0031.
■650  4▼aMedical  imaging.
■650  4▼aBiomedical  engineering.
■653    ▼aComputer  vision
■653    ▼aDeep  learning
■653    ▼aMachine  learning
■653    ▼aAcute  ischemic  stroke
■653    ▼aTime  since  stroke  onset
■653    ▼aMechanical  Thrombectomy
■690    ▼a0574
■690    ▼a0541
■690    ▼a0800
■71020▼aUniversity  of  California,  Los  Angeles▼bBioengineering  0288.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0031
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932972▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0029776 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치