본문

서브메뉴

Data-Driven Optimization for Low-Power Wide-Area Network Planning- [electronic resource]
Data-Driven Optimization for Low-Power Wide-Area Network Planning- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934615
International Standard Book Number  
9798380315623
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Aarts, Sander.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(169 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Shmoys, David.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Low-Power Wide-Area Networks (LPWANs) are a key technology for connecting Things to the Internet. The LoRaWAN protocol is a particularly popular example, featuring over 300 million connected devices, 5.9 million wireless receivers installed, and nearly 200 public network operators. We consider the design and operation of these networks through the lens of operations research, employing modeling tools, optimization methods, and the mindset of data-driven decision-making, to develop a toolkit for planning and operating LPWANS in a principled approach. First, we formulate learnable models for both wireless connectivity and interference. Our work on interference features a new interpretable subset choice model with strong foundation in random utility theory. Secondly, leaning on data-derived insights, we formulate a wireless receiver placement problem as a covering integer program, which can be stylized as a set cover problem. Motivated by geometric regularities in LoRaWAN connectivity, we develop a new algorithm for geometric set cover, improving the time-complexity of the state-of-the art, while matching the best known asymptotic approximation-ratio with respect to the shallow-cell complexity. Finally, we develop a new provably optimal cost-sharing mechanism for the more general covering integer program that uses duality in a strengthened LP-formulation. We use the mechanism to better understand and guide cost-, and infrastructure-sharing between LPWANs.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Statistics.
Index Term-Uncontrolled  
Algorithms
Index Term-Uncontrolled  
Internet of Things
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Wireless networks
Index Term-Uncontrolled  
Data-derived insights
Added Entry-Corporate Name  
Cornell University Operations Research and Information Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643809

MARC

 008240221s2023        ulk                      00        kor
■001000016934615
■00520240214101633
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380315623
■035    ▼a(MiAaPQ)AAI30631424
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aAarts,  Sander.▼0(orcid)0000-0003-1852-9116
■24510▼aData-Driven  Optimization  for  Low-Power  Wide-Area  Network  Planning▼h[electronic  resource]
■260    ▼a[S.l.]▼bCornell  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(169  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Shmoys,  David.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aLow-Power  Wide-Area  Networks  (LPWANs)  are  a  key  technology  for  connecting  Things  to  the  Internet.  The  LoRaWAN  protocol  is  a  particularly  popular  example,  featuring  over  300  million  connected  devices,  5.9  million  wireless  receivers  installed,  and  nearly  200  public  network  operators.  We  consider  the  design  and  operation  of  these  networks  through  the  lens  of  operations  research,  employing  modeling  tools,  optimization  methods,  and  the  mindset  of  data-driven  decision-making,  to  develop  a  toolkit  for  planning  and  operating  LPWANS  in  a  principled  approach.  First,  we  formulate  learnable  models  for  both  wireless  connectivity  and  interference.  Our  work  on  interference  features  a  new  interpretable  subset  choice  model  with  strong  foundation  in  random  utility  theory.  Secondly,  leaning  on  data-derived  insights,  we  formulate  a  wireless  receiver  placement  problem  as  a  covering  integer  program,  which  can  be  stylized  as  a  set  cover  problem.  Motivated  by  geometric  regularities  in  LoRaWAN  connectivity,  we  develop  a  new  algorithm  for  geometric  set  cover,  improving  the  time-complexity  of  the  state-of-the  art,  while  matching  the  best  known  asymptotic  approximation-ratio  with  respect  to  the  shallow-cell  complexity.  Finally,  we  develop  a  new  provably  optimal  cost-sharing  mechanism  for  the  more  general  covering  integer  program  that  uses  duality  in  a  strengthened  LP-formulation.  We  use  the  mechanism  to  better  understand  and  guide  cost-,  and  infrastructure-sharing  between  LPWANs.
■590    ▼aSchool  code:  0058.
■650  4▼aComputer  science.
■650  4▼aStatistics.
■653    ▼aAlgorithms
■653    ▼aInternet  of  Things
■653    ▼aOptimization
■653    ▼aWireless  networks
■653    ▼aData-derived  insights
■690    ▼a0796
■690    ▼a0984
■690    ▼a0463
■71020▼aCornell  University▼bOperations  Research  and  Information  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934615▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0029710 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치