본문

서브메뉴

Extreme Fast Charging for Lithium Ion Batteries: Structural Analysis of Electrodes and Solvent Formulation of Electrolytes- [electronic resource]
内容资讯
Extreme Fast Charging for Lithium Ion Batteries: Structural Analysis of Electrodes and Solvent Formulation of Electrolytes- [electronic resource]
자료유형  
 학위논문
Control Number  
0016932824
International Standard Book Number  
9798379842055
Dewey Decimal Classification Number  
658
Main Entry-Personal Name  
Wu, Xianyang.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(123 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Zhao, Kejie.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Fossil fuel has dominated the global energy market for centuries, and the world is undergoing a great energy revolution from fossil fuel energy to renewable energies, given the concerns on global warming and extreme weather caused by the emission of carbon dioxide. Lithium ion batteries (LIBs) play an irreplaceable role in this incredible energy transition from fossil energy to renewable energy, given their importance in energy storage for electricity grids and promoting the mass adoption of battery electric vehicles (BEVs). Extreme fast charging (XFC) of LIBs, aiming to shorten the charging time to 15 minutes, will significantly improve their adoption in both the EV market and grid energy storage. However, XFC has been significantly hindered by the relatively sluggish Li+transport within LIBs.Herein, effects caused by increasing charging rates (from 1C, 4C to 6C) on LiNi0.6Mn0.2Co0.2O2 (NMC622) || graphite cell were systematically probed via various characterization methods. From electrochemical test on their rate/long term cycling performance, the significant decrease in available capacity under high charging rates was verified. Structural evolutions of cycled NMC622 cathode and graphite anode were further probed via ex-situ powder diffraction, and it was found that lattice parameters a and c of NMC622 experience irreversible evolution due to loss of active Li+ within NMC622; no structural evolution was found for the graphite anode, even after 200 cycles under 6C (10 minutes) high charging rates. The aging behavior of liquid electrolyte was further analyzed via inductively coupled plasma-optical emission spectrometry (ICP-OES) and gas chromatography-mass spectrometry (GC-MS), increased Li+concentration under higher charging rates and show-up of diethyl carbonate (DEC) and dimethyl carbonate (DMC) caused by transesterification both suggest faster aging/degradation of liquid electrolyte under higher charging rates.Given the structural evolution of NMC622 caused by irreversible Li+ loss after long term cycling, the structural evolution of both NMC622 cathode and lithiated graphite anode were further studied via operando neutron diffraction on customized LiNi0.6Mn0.2Co0.2O2 (NMC622) || graphite cell. Via a quantitative analysis of collected Bragg peaks for NMC622 and lithiated graphite anode, we found the rate independent structural evolution of NMC622: its lattice parameters a and c are mainly determined by Li+ contents within it (x within LixNi0.6Mn0.2Co0.2O2) and follow the same evolution during the deintercalation process, from slowest 0.27 C charging to the fastest 4.4 C charging. For graphite intercalated compounds (GICs) formed during Li+ intercalating into graphite, the sequential phase transition from pure graphite → stage III (LiC30) → stage II (LiC12) → stage I (LiC6) phase under 0.27 C charging is consistent with previous studies. This sequential phase transition is generally maintained under increasing charging rates, and the co-existence of LiC12 phase and LiC6 was found for lithiated graphite under 4.4 C charging, mainly due to the large inhomogeneity under these high charging rates. Meanwhile, for the stage II (LiC12) → stage I (LiC6) transition, which contributes half the specific capacity for the graphite anode, quantitative analysis via Johnson-Mehl-Avrami-Kolmogorov (JMAK) model suggests it to be a diffusioncontrolled, one-dimensional transition, with decreasing nucleation kinetics under increasing charging rates.
Subject Added Entry-Topical Term  
Behavior.
Subject Added Entry-Topical Term  
Electrolytes.
Subject Added Entry-Topical Term  
Graphite.
Subject Added Entry-Topical Term  
Electrodes.
Subject Added Entry-Topical Term  
Oxidation.
Subject Added Entry-Topical Term  
Fossil fuels.
Subject Added Entry-Topical Term  
Carbon.
Subject Added Entry-Topical Term  
Solvents.
Subject Added Entry-Topical Term  
Phase transitions.
Subject Added Entry-Topical Term  
Plating.
Subject Added Entry-Topical Term  
Scientific imaging.
Subject Added Entry-Topical Term  
Energy storage.
Subject Added Entry-Topical Term  
Alternative energy sources.
Subject Added Entry-Topical Term  
Lithium.
Subject Added Entry-Topical Term  
Energy.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643785
New Books MORE
최근 3년간 통계입니다.

高级搜索信息

  • 预订
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 我的文件夹
材料
注册编号 呼叫号码. 收藏 状态 借信息.
TQ0029690 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

*保留在借用的书可用。预订,请点击预订按钮

해당 도서를 다른 이용자가 함께 대출한 도서

Related books

Related Popular Books

도서위치