본문

서브메뉴

Capturing Changes in Combinatorial Dynamical Systems Via Persistent Homology- [electronic resource]
Capturing Changes in Combinatorial Dynamical Systems Via Persistent Homology- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932816
International Standard Book Number  
9798379846268
Dewey Decimal Classification Number  
500
Main Entry-Personal Name  
Slechta, Ryan.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(105 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Dey, Tamal K.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Recent innovations in combinatorial dynamical systems permit them to be studied with algorithmic methods. One such method from topological data analysis, called persistent homology, allows one to summarize the changing homology of a sequence of simplicial complexes. This dissertation explicates three methods for capturing and summarizing changes in combinatorial dynamical systems through the lens of persistent homology. The first places the Conley index in the persistent homology setting. This permits one to capture the persistence of salient features of a combinatorial dynamical system. The second shows how to capture changes in combinatorial dynamical systems at different resolutions by computing the persistence of the Conley-Morse graph. Finally, the third places Conley's notion of continuation in the combinatorial setting and permits the tracking of isolated invariant sets across a sequence of combinatorial dynamical systems.
Subject Added Entry-Topical Term  
Decomposition.
Subject Added Entry-Topical Term  
Dynamical systems.
Subject Added Entry-Topical Term  
Neighborhoods.
Subject Added Entry-Topical Term  
Permits.
Subject Added Entry-Topical Term  
Bar codes.
Subject Added Entry-Topical Term  
Mathematics.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643781

MARC

 008240221s2022        ulk                      00        kor
■001000016932816
■00520240214100548
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379846268
■035    ▼a(MiAaPQ)AAI30506187
■035    ▼a(MiAaPQ)Purdue19611564
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a500
■1001  ▼aSlechta,  Ryan.
■24510▼aCapturing  Changes  in  Combinatorial  Dynamical  Systems  Via  Persistent  Homology▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(105  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Dey,  Tamal  K.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aRecent  innovations  in  combinatorial  dynamical  systems  permit  them  to  be  studied  with  algorithmic  methods.  One  such  method  from  topological  data  analysis,  called  persistent  homology,  allows  one  to  summarize  the  changing  homology  of  a  sequence  of  simplicial  complexes.  This  dissertation  explicates  three  methods  for  capturing  and  summarizing  changes  in  combinatorial  dynamical  systems  through  the  lens  of  persistent  homology.  The  first  places  the  Conley  index  in  the  persistent  homology  setting.  This  permits  one  to  capture  the  persistence  of  salient  features  of  a  combinatorial  dynamical  system.  The  second  shows  how  to  capture  changes  in  combinatorial  dynamical  systems  at  different  resolutions  by  computing  the  persistence  of  the  Conley-Morse  graph.  Finally,  the  third  places  Conley's  notion  of  continuation  in  the  combinatorial  setting  and  permits  the  tracking  of  isolated  invariant  sets  across  a  sequence  of  combinatorial  dynamical  systems.
■590    ▼aSchool  code:  0183.
■650  4▼aDecomposition.
■650  4▼aDynamical  systems.
■650  4▼aNeighborhoods.
■650  4▼aPermits.
■650  4▼aBar  codes.
■650  4▼aMathematics.
■690    ▼a0405
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932816▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0029686 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치