본문

서브메뉴

Self-heating Effect Alleviation for Post-Moore era Channel Materials- [electronic resource]
Self-heating Effect Alleviation for Post-Moore era Channel Materials- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932812
International Standard Book Number  
9798379845780
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Liao, Pai-Ying.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(138 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Ye, Peide D.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약As the miniaturization of the transistors in integrated circuits approaches the atomic scale limit, novel materials with exceptional performance are desired. Moreover, to conduct enough current with an ultrathin and small-scale body, high drain current density is preferably required. Nevertheless, devices may suffer seriously from self-heating effect (SHE) with high drain bias and current if the generated heat cannot be dissipated efficiently. In this thesis, we introduce two material systems and several techniques to accomplish the demand without SHE. Tellurium, as a van der Waals material composed by atomic helical chains, is able to realize its one-dimensional structure. We illustrate that the cross-sectional current density of 150 MA/cm2 is achieved through boron nitride nanotube (BNNT) encapsulation without SHE due to the superior thermal conductivity of BN. With the nanotube encapsulation technique applied, one-dimensional tellurium nanowire transistors with diameter down to 2 nm are realized as well, and single tellurium atomic chain is isolated. Furthermore, atomic-layer-deposited indium oxide (In2O3) as thin-film transistors exhibit even better current carrying capacity. Through co-optimization of their electrical and thermal performance, drain current up to 4.3 mA/μm is achieved with a 1.9-nm-thick body without SHE. The alleviation of SHE is due to a) the high thermal conductivity of the substrate assisting on efficiently dissipating the generated thermal energy, b) SHE avoidance with short-pulse measurement, and c) interface engineering between the channel stack and the substrate. These two material systems may be the solid solution to the desire of high current density transistors in the post-Moore era.
Subject Added Entry-Topical Term  
Silicon.
Subject Added Entry-Topical Term  
Crystal structure.
Subject Added Entry-Topical Term  
Boron.
Subject Added Entry-Topical Term  
Phosphorus.
Subject Added Entry-Topical Term  
Integrated circuits.
Subject Added Entry-Topical Term  
Cadmium telluride.
Subject Added Entry-Topical Term  
Thermal energy.
Subject Added Entry-Topical Term  
Nanowires.
Subject Added Entry-Topical Term  
Spectrum analysis.
Subject Added Entry-Topical Term  
Lasers.
Subject Added Entry-Topical Term  
Power.
Subject Added Entry-Topical Term  
Carbon.
Subject Added Entry-Topical Term  
Molybdenum.
Subject Added Entry-Topical Term  
Chemical vapor deposition.
Subject Added Entry-Topical Term  
Selenium.
Subject Added Entry-Topical Term  
Chemical bonds.
Subject Added Entry-Topical Term  
Indium.
Subject Added Entry-Topical Term  
Magnesium.
Subject Added Entry-Topical Term  
Physical properties.
Subject Added Entry-Topical Term  
Heat conductivity.
Subject Added Entry-Topical Term  
Visualization.
Subject Added Entry-Topical Term  
Thin films.
Subject Added Entry-Topical Term  
Annealing.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Condensed matter physics.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Thermodynamics.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643779

MARC

 008240221s2022        ulk                      00        kor
■001000016932812
■00520240214100548
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379845780
■035    ▼a(MiAaPQ)AAI30506171
■035    ▼a(MiAaPQ)Purdue21395601
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aLiao,  Pai-Ying.
■24510▼aSelf-heating  Effect  Alleviation  for  Post-Moore  era  Channel  Materials▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(138  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Ye,  Peide  D.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aAs  the  miniaturization  of  the  transistors  in  integrated  circuits  approaches  the  atomic  scale  limit,  novel  materials  with  exceptional  performance  are  desired.  Moreover,  to  conduct  enough  current  with  an  ultrathin  and  small-scale  body,  high  drain  current  density  is  preferably  required.  Nevertheless,  devices  may  suffer  seriously  from  self-heating  effect  (SHE)  with  high  drain  bias  and  current  if  the  generated  heat  cannot  be  dissipated  efficiently.  In  this  thesis,  we  introduce  two  material  systems  and  several  techniques  to  accomplish  the  demand  without  SHE.  Tellurium,  as  a  van  der  Waals  material  composed  by  atomic  helical  chains,  is  able  to  realize  its  one-dimensional  structure.  We  illustrate  that  the  cross-sectional  current  density  of  150  MA/cm2  is  achieved  through  boron  nitride  nanotube  (BNNT)  encapsulation  without  SHE  due  to  the  superior  thermal  conductivity  of  BN.  With  the  nanotube  encapsulation  technique  applied,  one-dimensional  tellurium  nanowire  transistors  with  diameter  down  to  2  nm  are  realized  as  well,  and  single  tellurium  atomic  chain  is  isolated.  Furthermore,  atomic-layer-deposited  indium  oxide  (In2O3)  as  thin-film  transistors  exhibit  even  better  current  carrying  capacity.  Through  co-optimization  of  their  electrical  and  thermal  performance,  drain  current  up  to  4.3  mA/μm  is  achieved  with  a  1.9-nm-thick  body  without  SHE.  The  alleviation  of  SHE  is  due  to  a)  the  high  thermal  conductivity  of  the  substrate  assisting  on  efficiently  dissipating  the  generated  thermal  energy,  b)  SHE  avoidance  with  short-pulse  measurement,  and  c)  interface  engineering  between  the  channel  stack  and  the  substrate.  These  two  material  systems  may  be  the  solid  solution  to  the  desire  of  high  current  density  transistors  in  the  post-Moore  era.
■590    ▼aSchool  code:  0183.
■650  4▼aSilicon.
■650  4▼aCrystal  structure.
■650  4▼aBoron.
■650  4▼aPhosphorus.
■650  4▼aIntegrated  circuits.
■650  4▼aCadmium  telluride.
■650  4▼aThermal  energy.
■650  4▼aNanowires.
■650  4▼aSpectrum  analysis.
■650  4▼aLasers.
■650  4▼aPower.
■650  4▼aCarbon.
■650  4▼aMolybdenum.
■650  4▼aChemical  vapor  deposition.
■650  4▼aSelenium.
■650  4▼aChemical  bonds.
■650  4▼aIndium.
■650  4▼aMagnesium.
■650  4▼aPhysical  properties.
■650  4▼aHeat  conductivity.
■650  4▼aVisualization.
■650  4▼aThin  films.
■650  4▼aAnnealing.
■650  4▼aAnalytical  chemistry.
■650  4▼aChemistry.
■650  4▼aCondensed  matter  physics.
■650  4▼aElectrical  engineering.
■650  4▼aEnergy.
■650  4▼aMaterials  science.
■650  4▼aNanotechnology.
■650  4▼aOptics.
■650  4▼aPhysics.
■650  4▼aThermodynamics.
■690    ▼a0486
■690    ▼a0485
■690    ▼a0611
■690    ▼a0544
■690    ▼a0791
■690    ▼a0794
■690    ▼a0652
■690    ▼a0752
■690    ▼a0605
■690    ▼a0348
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932812▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0029684 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치