본문

서브메뉴

Surface Functionalization of Colloidal Nanoparticles Through Ligand Exchange Reactions- [electronic resource]
Surface Functionalization of Colloidal Nanoparticles Through Ligand Exchange Reactions- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932771
International Standard Book Number  
9798379844158
Dewey Decimal Classification Number  
500
Main Entry-Personal Name  
Yadav, Vamakshi.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(127 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Li, Christina W.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Surface functionalization of metallic nanoparticles is an attractive route to tailor the ensemble geometry and redox properties of active sites in heterogeneous catalysts. However, it is challenging to generate well-defined interfaces through conventional impregnation and one-pot colloidal synthesis methods. In this work, we utilize ligand exchange reactions for post synthetic surface modification of colloidal nanoparticles to generate unique core-shell and surface alloy structures. We use halometallate and metal chalcogenide complexes to create surface sites that are active for electrocatalytic hydrogen evolution reaction (HER).We synthesize a self-limiting monolayer of metal chalcogenides on colloidal Au nanoparticles through biphasic ligand exchange reaction between ammonium tetrathiomolybdate (NH4)2MoS4 complex and Au nanoparticles. Through a combination of spectroscopy techniques and computational methods, we show that strong Au-S interactions introduce electronic and geometric distortion to the geometry and bond metrics of MoS4 2- complex. Moreover, proximal MoS4 units adsorbed on the Au surface interlink to form small MoSx oligomers with highly active bridging disulfide sites. Consequently, these core-shell AuMoS4 nanoparticles exhibit significantly higher HER activity than MoS4 2- supported on non-interacting carbon supports under highly acidic electrolyte conditions. Although post catalysis characterization reveals partial hydrolysis of surface adsorbed MoSxspecies, stable HER activity under bulk electrolysis condition indicates that active sites remain persistent.In an effort to extend these ligand exchange reactions to create metal/metal interfaces on other coinage metal nanoparticles such as Ag, we design metal-ligand coordination complexes to mitigate undesired galvanic replacement reactions. By varying the strength and number of coordinating ligands, we fine-tune the redox potential of oxidized noble metal precursors and confine the deposition of noble metals to a few surface layers of the Ag nanoparticles. We utilize organic amine and phosphine ligands to generate Ag AgM core-shell nanoparticles, where M = Pd, Pt, and Au. Surface alloy or pure metal shells of Pd and Pt on Ag nanoparticles generated through this ligand-based strategy exhibited high precious metal atom utilization in electrocatalytic hydrogen evolution reaction.
Subject Added Entry-Topical Term  
Transmission electron microscopy.
Subject Added Entry-Topical Term  
Electrolytes.
Subject Added Entry-Topical Term  
Histograms.
Subject Added Entry-Topical Term  
Electrodes.
Subject Added Entry-Topical Term  
Spectrum analysis.
Subject Added Entry-Topical Term  
Nanoparticles.
Subject Added Entry-Topical Term  
Carbon.
Subject Added Entry-Topical Term  
Adsorption.
Subject Added Entry-Topical Term  
Hydrogen.
Subject Added Entry-Topical Term  
Particle size.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Graphene.
Subject Added Entry-Topical Term  
Catalysis.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Atoms & subatomic particles.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Physics.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643768

MARC

 008240221s2022        ulk                      00        kor
■001000016932771
■00520240214100543
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379844158
■035    ▼a(MiAaPQ)AAI30505971
■035    ▼a(MiAaPQ)Purdue20323833
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a500
■1001  ▼aYadav,  Vamakshi.
■24510▼aSurface  Functionalization  of  Colloidal  Nanoparticles  Through  Ligand  Exchange  Reactions▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(127  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Li,  Christina  W.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aSurface  functionalization  of  metallic  nanoparticles  is  an  attractive  route  to  tailor  the  ensemble  geometry  and  redox  properties  of  active  sites  in  heterogeneous  catalysts.  However,  it  is  challenging  to  generate  well-defined  interfaces  through  conventional  impregnation  and  one-pot  colloidal  synthesis  methods.  In  this  work,  we  utilize  ligand  exchange  reactions  for  post  synthetic  surface  modification  of  colloidal  nanoparticles  to  generate  unique  core-shell  and  surface  alloy  structures.  We  use  halometallate  and  metal  chalcogenide  complexes  to  create  surface  sites  that  are  active  for  electrocatalytic  hydrogen  evolution  reaction  (HER).We  synthesize  a  self-limiting  monolayer  of  metal  chalcogenides  on  colloidal  Au  nanoparticles  through  biphasic  ligand  exchange  reaction  between  ammonium  tetrathiomolybdate  (NH4)2MoS4  complex  and  Au  nanoparticles.  Through  a  combination  of  spectroscopy  techniques  and  computational  methods,  we  show  that  strong  Au-S  interactions  introduce  electronic  and  geometric  distortion  to  the  geometry  and  bond  metrics  of  MoS4  2-  complex.  Moreover,  proximal  MoS4  units  adsorbed  on  the  Au  surface  interlink  to  form  small  MoSx  oligomers  with  highly  active  bridging  disulfide  sites.  Consequently,  these  core-shell  AuMoS4  nanoparticles  exhibit  significantly  higher  HER  activity  than  MoS4  2-  supported  on  non-interacting  carbon  supports  under  highly  acidic  electrolyte  conditions.  Although  post  catalysis  characterization  reveals  partial  hydrolysis  of  surface  adsorbed  MoSxspecies,  stable  HER  activity  under  bulk  electrolysis  condition  indicates  that  active  sites  remain  persistent.In  an  effort  to  extend  these  ligand  exchange  reactions  to  create  metal/metal  interfaces  on  other  coinage  metal  nanoparticles  such  as  Ag,  we  design  metal-ligand  coordination  complexes  to  mitigate  undesired  galvanic  replacement  reactions.  By  varying  the  strength  and  number  of  coordinating  ligands,  we  fine-tune  the  redox  potential  of  oxidized  noble  metal  precursors  and  confine  the  deposition  of  noble  metals  to  a  few  surface  layers  of  the  Ag  nanoparticles.  We  utilize  organic  amine  and  phosphine  ligands  to  generate  Ag  AgM  core-shell  nanoparticles,  where  M  =  Pd,  Pt,  and  Au.  Surface  alloy  or  pure  metal  shells  of  Pd  and  Pt  on  Ag  nanoparticles  generated  through  this  ligand-based  strategy  exhibited  high  precious  metal  atom  utilization  in  electrocatalytic  hydrogen  evolution  reaction.
■590    ▼aSchool  code:  0183.
■650  4▼aTransmission  electron  microscopy.
■650  4▼aElectrolytes.
■650  4▼aHistograms.
■650  4▼aElectrodes.
■650  4▼aSpectrum  analysis.
■650  4▼aNanoparticles.
■650  4▼aCarbon.
■650  4▼aAdsorption.
■650  4▼aHydrogen.
■650  4▼aParticle  size.
■650  4▼aEnergy.
■650  4▼aGraphene.
■650  4▼aCatalysis.
■650  4▼aGeometry.
■650  4▼aAtoms  &  subatomic  particles.
■650  4▼aAnalytical  chemistry.
■650  4▼aAtomic  physics.
■650  4▼aChemistry.
■650  4▼aNanotechnology.
■650  4▼aOptics.
■650  4▼aPhysics.
■690    ▼a0791
■690    ▼a0486
■690    ▼a0748
■690    ▼a0485
■690    ▼a0652
■690    ▼a0752
■690    ▼a0605
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932771▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0029673 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치