본문

서브메뉴

Reaction Kinetics of Direct Gas-Phase Propylene Epoxidation on AU/TS-1 Catalysts- [electronic resource]
내용보기
Reaction Kinetics of Direct Gas-Phase Propylene Epoxidation on AU/TS-1 Catalysts- [electronic resource]
자료유형  
 학위논문
Control Number  
0016932757
International Standard Book Number  
9798379842628
Dewey Decimal Classification Number  
600
Main Entry-Personal Name  
Arvay, Jeremy W.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(232 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Ribeiro, Fabio.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Propylene oxide (PO), is a key intermediate in the production of value-added products, such as polyurethanes and propylene glycol. Current industrially practiced methods of propylene epoxidation, including hydrochlorination, epoxidation by organic peroxides, and the Hydrogen Peroxide to Propylene Oxide (HPPO) process either produce PO unselectively, necessitating energy intensive separation processes, produce environmentally damaging byproducts, or require several sequential reaction vessels. A potential solution for these issues exists in the form of a single-step, highly selective gas phase reaction to produce PO. Industrial adoption of a process utilizing this technology has not occurred due to the failure of state-of-the-art Au/TS-1 catalysts, consisting of gold supported on titanium MFI, to meet economic targets for hydrogen use efficiency, selectivity to PO, and PO rate-permass, improvement on all of which has been hindered by a lack of understanding of how Au-TS-1 catalysts fundamentally operate. Therefore, the goal of this work has been to understand the active site requirements and reaction kinetics with the aim of lowering barriers to commercialization of this more environmentally benign process.Once we had developed a general understanding of product inhibition, we applied this knowledge to the kinetics of propylene epoxidation over Au/TS-1 catalysts. We measured gas phase kinetics in a continuous stirred tank reactor (CSTR) free from temperature and concentration gradients. Apparent reaction orders measured at 473 K for H2, O2, and propylene for a series of Au-DP/TS-1 with varied Au and Ti contents were consistent with those reported previously. Co-feeding propylene oxide enabled measurement of the apparent reaction order in propylene oxide and the determination that relevant pressures of propylene oxide reversibly inhibit propylene epoxidation over Au-DP/TS-1, while co-feeding carbon dioxide and water had no effect on the propylene epoxidation rate. The measured reaction orders for propylene epoxidation, after corrected to account for propylene oxide inhibition, are consistent with a 'simultaneous' mechanism requiring two distinct, but adjacent, types of sites. H2oxidation rates are not inhibited by propylene oxide, implying that the sites required for hydrogen oxidation are distinct from those required for propylene epoxidation.26 We then shifted focus to elucidate structural details of gold active sites and their interaction with Ti active sites. To determine whether the roles of extracrystalline and intracrystalline gold nanoparticles supported on titanosilicate-1 on direct propylene epoxidation are intrinsically different, the kinetics of direct propylene epoxidation were measured in a gas-phase continuous stirred tank reactor (CSTR) over PVP-coated gold nanoparticles (Au-PVP/TS-1) deposited on TS-1 supports. The PVP-coated gold nanoparticles were too large to fit into the micropores of TS-1, even after ligands were removed in situ by a series of pretreatments, as confirmed by both TEM and TGA-DSC. The activation energy and reaction orders for H2, O2, propylene, propylene oxide, carbon dioxide, and water for propylene epoxidation measured on Au-PVP/TS-1 catalysts were consistent with those reported for Au/TS-1 prepared via deposition-precipitation (Au-DP/TS-1).
Subject Added Entry-Topical Term  
Hydrogen.
Subject Added Entry-Topical Term  
Kinetics.
Subject Added Entry-Topical Term  
Particle size.
Subject Added Entry-Topical Term  
Spectrum analysis.
Subject Added Entry-Topical Term  
Oxidation.
Subject Added Entry-Topical Term  
Nanoparticles.
Subject Added Entry-Topical Term  
Adsorption.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Optics.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643762
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0029666 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치