본문

서브메뉴

Testing Models of Sheaths and Instabilities with Particle-in-Cell Simulations- [electronic resource]
Testing Models of Sheaths and Instabilities with Particle-in-Cell Simulations- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933685
International Standard Book Number  
9798379566302
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Beving, Lucas P.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(170 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Baalrud, Scott.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Sheaths and presheaths represent the response of a plasma to boundaries and are an instance of plasma self-organization. They are commonly utilized in plasma technologies and reduced models of plasmas across a range of gas pressures. This thesis leverages the particle-in-cell method to explain discrepancies between models and measurements of ion temperature at low pressures, test untested models of high pressure sheaths, and explore a novel electron plasma wave instability driven by an ambipolar electric field.Simulations reveal that ion-acoustic instabilities excited in presheaths can cause significant ion heating. Ion-acoustic instabilities are excited by the ion flow toward a sheath when the neutral pressure is small enough and the electron temperature is large enough. A series of 1D simulations were conducted in which electrons and ions were uniformly sourced with an ion temperature of 0.026 eV and different electron temperatures (0.1 - 50 eV). Ion heating was observed when the electron-to-ion temperature ratio exceeded the minimum value predicted by linear response theory to excite ion-acoustic instabilities at the sheath edge (Te/Ti ≈ 28). When this threshold was exceeded, the temperature equilibriation rate between ions and electrons increased near the sheath so that the local temperature ratio did not exceed the threshold for instability. This resulted in significant ion heating near the sheath edge, which also extended back into the bulk plasma because of wave reflection from the sheath. The instability heating was found to decrease for higher pressures, where ion-neutral collisions damp the waves and ion heating is instead dominated by inelastic collisions in the presheath.Simulations using the direct simulation Monte Carlo method were used to study how neutral pressure influences plasma properties at the sheath edge. The high rate of ion-neutral collisions at pressures above several mTorr were found to cause a decrease in the ion velocity at the sheath edge (collisional Bohm criterion), a decrease in the edge-to-center density ratio, and an increase in the sheath width and sheath potential drop. A comparison with existing analytic models generally indicates favorable agreement, but with some distinctions. One is that models for the edge-to-center density ratio need to be made consistent with the collisional Bohm criterion. With this and similar corrections, a comprehensive fluid-based model of the plasma boundary was constructed that compares well with the simulations.Ambipolar electric fields are commonplace in plasmas and affect transport by driving currents and in some cases instabilities. Simulations demonstrate that an instability, named the electron-field instability, can be driven by an ambipolar strength electric field. The instability excites waves of 30 Debye-lengths and has a growth-rate that is proportional to the electric field strength. Unlike other instabilities, the electron-field instability only requires that the electrons interact with the field and does not result from the relative drift between electron populations (beam instability) or electrons and ions (ion-acoustic instability). In fact, the instability occurs near the electron plasma frequency which is much higher than most drift instabilities. Low-temperature and space-based plasmas are found to be likely systems where the instability may be excited. We find that our simulations and linear theory agree until a non-linear state is reached in the simulations.These results demonstrate that low pressure sheaths are susceptible to instabilities that can significantly affect plasmas properties, while fluid model accurately capture collisional effects at higher pressures.
Subject Added Entry-Topical Term  
Plasma physics.
Subject Added Entry-Topical Term  
Applied physics.
Index Term-Uncontrolled  
Low-temperature plasmas
Index Term-Uncontrolled  
Particle-in-cell simulations
Index Term-Uncontrolled  
Plasma instabilities
Added Entry-Corporate Name  
University of Michigan Applied Physics
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643717

MARC

 008240221s2023        ulk                      00        kor
■001000016933685
■00520240214101323
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379566302
■035    ▼a(MiAaPQ)AAI30548540
■035    ▼a(MiAaPQ)umichrackham004835
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aBeving,  Lucas  P.
■24510▼aTesting  Models  of  Sheaths  and  Instabilities  with  Particle-in-Cell  Simulations▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(170  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Baalrud,  Scott.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aSheaths  and  presheaths  represent  the  response  of  a  plasma  to  boundaries  and  are  an  instance  of  plasma  self-organization.  They  are  commonly  utilized  in  plasma  technologies  and  reduced  models  of  plasmas  across  a  range  of  gas  pressures.  This  thesis  leverages  the  particle-in-cell  method  to  explain  discrepancies  between  models  and  measurements  of  ion  temperature  at  low  pressures,  test  untested  models  of  high  pressure  sheaths,  and  explore  a  novel  electron  plasma  wave  instability  driven  by  an  ambipolar  electric  field.Simulations  reveal  that  ion-acoustic  instabilities  excited  in  presheaths  can  cause  significant  ion  heating.  Ion-acoustic  instabilities  are  excited  by  the  ion  flow  toward  a  sheath  when  the  neutral  pressure  is  small  enough  and  the  electron  temperature  is  large  enough.  A  series  of  1D  simulations  were  conducted  in  which  electrons  and  ions  were  uniformly  sourced  with  an  ion  temperature  of  0.026  eV  and  different  electron  temperatures  (0.1  -  50  eV).  Ion  heating  was  observed  when  the  electron-to-ion  temperature  ratio  exceeded  the  minimum  value  predicted  by  linear  response  theory  to  excite  ion-acoustic  instabilities  at  the  sheath  edge  (Te/Ti  ≈  28).  When  this  threshold  was  exceeded,  the  temperature  equilibriation  rate  between  ions  and  electrons  increased  near  the  sheath  so  that  the  local  temperature  ratio  did  not  exceed  the  threshold  for  instability.  This  resulted  in  significant  ion  heating  near  the  sheath  edge,  which  also  extended  back  into  the  bulk  plasma  because  of  wave  reflection  from  the  sheath.  The  instability  heating  was  found  to  decrease  for  higher  pressures,  where  ion-neutral  collisions  damp  the  waves  and  ion  heating  is  instead  dominated  by  inelastic  collisions  in  the  presheath.Simulations  using  the  direct  simulation  Monte  Carlo  method  were  used  to  study  how  neutral  pressure  influences  plasma  properties  at  the  sheath  edge.  The  high  rate  of  ion-neutral  collisions  at  pressures  above  several  mTorr  were  found  to  cause  a  decrease  in  the  ion  velocity  at  the  sheath  edge  (collisional  Bohm  criterion),  a  decrease  in  the  edge-to-center  density  ratio,  and  an  increase  in  the  sheath  width  and  sheath  potential  drop.  A  comparison  with  existing  analytic  models  generally  indicates  favorable  agreement,  but  with  some  distinctions.  One  is  that  models  for  the  edge-to-center  density  ratio  need  to  be  made  consistent  with  the  collisional  Bohm  criterion.  With  this  and  similar  corrections,  a  comprehensive  fluid-based  model  of  the  plasma  boundary  was  constructed  that  compares  well  with  the  simulations.Ambipolar  electric  fields  are  commonplace  in  plasmas  and  affect  transport  by  driving  currents  and  in  some  cases  instabilities.  Simulations  demonstrate  that  an  instability,  named  the  electron-field  instability,  can  be  driven  by  an  ambipolar  strength  electric  field.  The  instability  excites  waves  of  30  Debye-lengths  and  has  a  growth-rate  that  is  proportional  to  the  electric  field  strength.  Unlike  other  instabilities,  the  electron-field  instability  only  requires  that  the  electrons  interact  with  the  field  and  does  not  result  from  the  relative  drift  between  electron  populations  (beam  instability)  or  electrons  and  ions  (ion-acoustic  instability).  In  fact,  the  instability  occurs  near  the  electron  plasma  frequency  which  is  much  higher  than  most  drift  instabilities.  Low-temperature  and  space-based  plasmas  are  found  to  be  likely  systems  where  the  instability  may  be  excited.  We  find  that  our  simulations  and  linear  theory  agree  until  a  non-linear  state  is  reached  in  the  simulations.These  results  demonstrate  that  low  pressure  sheaths  are  susceptible  to  instabilities  that  can  significantly  affect  plasmas  properties,  while  fluid  model  accurately  capture  collisional  effects  at  higher  pressures.
■590    ▼aSchool  code:  0127.
■650  4▼aPlasma  physics.
■650  4▼aApplied  physics.
■653    ▼aLow-temperature  plasmas
■653    ▼aParticle-in-cell  simulations
■653    ▼aPlasma  instabilities
■690    ▼a0759
■690    ▼a0215
■71020▼aUniversity  of  Michigan▼bApplied  Physics.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933685▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0029618 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치