본문

서브메뉴

Nonpoint Source Pollutant Modeling in Small Agricultural Watersheds with the Water Erosion Prediction Project- [electronic resource]
Nonpoint Source Pollutant Modeling in Small Agricultural Watersheds with the Water Erosion Prediction Project- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932829
International Standard Book Number  
9798379848392
Dewey Decimal Classification Number  
628
Main Entry-Personal Name  
McGehee, Ryan P.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(233 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: A.
General Note  
Advisor: Flanagan, Dennis C.;Engel, Bernard A.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Current watershed-scale, nonpoint source (NPS) pollution models do not represent the processes and impacts of agricultural best management practices (BMP) on water quality with sufficient detail. To begin addressing this gap, a novel process-based, watershed-scale, water quality model (WEPP-WQ) was developed based on the Water Erosion Prediction Project (WEPP) and the Soil and Water Assessment Tool (SWAT) models. The proposed model was validated at both hillslope and watershed scales for runoff, sediment, and both soluble and particulate forms of nitrogen and phosphorus. WEPP-WQ is now one of only two models which simulates BMP impacts on water quality in 'high' detail, and it is the only one not based on USLE sediment predictions. Model validations indicated that particulate nutrient predictions were better than soluble nutrient predictions for both nitrogen and phosphorus. Predictions of uniform conditions outperformed nonuniform conditions, and calibrated model simulations performed better than uncalibrated model simulations. Applications of these kinds of models in real-world, historical simulations are often limited by a lack of field-scale agricultural management inputs. Therefore, a prototype tool was developed to derive management inputs for hydrologic models from remotely sensed imagery at field-scale resolution. At present, only predictions of crop, cover crop, and tillage practice inference are supported and were validated at annual and average annual time intervals based on data availability for the various management endpoints. Extraction model training and validation were substantially limited by relatively small field areas in the observed management dataset. Both of these efforts contribute to computational modeling research and applications pertaining to agricultural systems and their impacts on the environment.
Subject Added Entry-Topical Term  
Water quality.
Subject Added Entry-Topical Term  
Best management practices.
Subject Added Entry-Topical Term  
Agriculture.
Subject Added Entry-Topical Term  
Watersheds.
Subject Added Entry-Topical Term  
Sensors.
Subject Added Entry-Topical Term  
Support vector machines.
Subject Added Entry-Topical Term  
Water resources management.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643613

MARC

 008240221s2022        ulk                      00        kor
■001000016932829
■00520240214100550
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379848392
■035    ▼a(MiAaPQ)AAI30506238
■035    ▼a(MiAaPQ)Purdue21498348
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a628
■1001  ▼aMcGehee,  Ryan  P.
■24510▼aNonpoint  Source  Pollutant  Modeling  in  Small  Agricultural  Watersheds  with  the  Water  Erosion  Prediction  Project▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(233  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  A.
■500    ▼aAdvisor:  Flanagan,  Dennis  C.;Engel,  Bernard  A.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aCurrent  watershed-scale,  nonpoint  source  (NPS)  pollution  models  do  not  represent  the  processes  and  impacts  of  agricultural  best  management  practices  (BMP)  on  water  quality  with  sufficient  detail.  To  begin  addressing  this  gap,  a  novel  process-based,  watershed-scale,  water  quality  model  (WEPP-WQ)  was  developed  based  on  the  Water  Erosion  Prediction  Project  (WEPP)  and  the  Soil  and  Water  Assessment  Tool  (SWAT)  models.  The  proposed  model  was  validated  at  both  hillslope  and  watershed  scales  for  runoff,  sediment,  and  both  soluble  and  particulate  forms  of  nitrogen  and  phosphorus.  WEPP-WQ  is  now  one  of  only  two  models  which  simulates  BMP  impacts  on  water  quality  in  'high'  detail,  and  it  is  the  only  one  not  based  on  USLE  sediment  predictions.  Model  validations  indicated  that  particulate  nutrient  predictions  were  better  than  soluble  nutrient  predictions  for  both  nitrogen  and  phosphorus.  Predictions  of  uniform  conditions  outperformed  nonuniform  conditions,  and  calibrated  model  simulations  performed  better  than  uncalibrated  model  simulations.  Applications  of  these  kinds  of  models  in  real-world,  historical  simulations  are  often  limited  by  a  lack  of  field-scale  agricultural  management  inputs.  Therefore,  a  prototype  tool  was  developed  to  derive  management  inputs  for  hydrologic  models  from  remotely  sensed  imagery  at  field-scale  resolution.  At  present,  only  predictions  of  crop,  cover  crop,  and  tillage  practice  inference  are  supported  and  were  validated  at  annual  and  average  annual  time  intervals  based  on  data  availability  for  the  various  management  endpoints.  Extraction  model  training  and  validation  were  substantially  limited  by  relatively  small  field  areas  in  the  observed  management  dataset.  Both  of  these  efforts  contribute  to  computational  modeling  research  and  applications  pertaining  to  agricultural  systems  and  their  impacts  on  the  environment.
■590    ▼aSchool  code:  0183.
■650  4▼aWater  quality.
■650  4▼aBest  management  practices.
■650  4▼aAgriculture.
■650  4▼aWatersheds.
■650  4▼aSensors.
■650  4▼aSupport  vector  machines.
■650  4▼aWater  resources  management.
■690    ▼a0473
■690    ▼a0800
■690    ▼a0454
■690    ▼a0595
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932829▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0029515 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치