본문

서브메뉴

Characterization of the Clock and Ephemeris Error Distributions of the Global Satellite Navigation System (GNSS)- [electronic resource]
Characterization of the Clock and Ephemeris Error Distributions of the Global Satellite Navigation System (GNSS)- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934530
International Standard Book Number  
9798380483605
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Liu, Xinwei.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(70 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Walter, Todd.
Dissertation Note  
Thesis (M.E.)--Stanford University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약With the rapid development and the broadened usage of GNSS technology, it becomes increas- ingly important to ensure the safety of the positioning, navigation. and timing provided by GNSS. Concepts such as Advanced Receiver Autonomous Integrity Monitoring (ARAIM) are designed to provide integrity guarantees for this purpose. These concepts rely ou the characterization of the errors. Reliable upper bounds can be placed on the potential errors in the positioning and timing estimates. As more navigation signals are incorporated, it becomes more likely that one or more signals may contain a significant error. Further, different error characteristics are expected to be encountered with new constellations and new signals.Multiple frequencies allow the near elimination of ionospheric errors, leaving satellite clock and ephemeris error as one of the largest potential error sources. Therefore more emphasis is put on characterizing the clock and ephemeris errors.To shed light on the satellite clock and ephemeris error behavior, we focus on characterizing the behavior of nominal satellite clock and ephemeris errors using Gaussian bounding parameters bias and σ . The errors are normalized by the user range accuracy (σURA). The bias and parameters correspond to the Gaussian mean and standard deviation, respectively. In particular, we investigate the inherent variability of the Gaussian error bounding parameters and the stability of the parameters with respect to diferent partitions such as time, diferent space vehicle numbers, diferent user range accuracy, etc. To do so, we provide two algorithms to quantify the inherent variability of the bounding parameters. We also provide an algorithm to capture this variability using a single set of statistics corresponding to the Gaussian mean and standard deviation. We call these BIASand Ʃ.In the first part of the thesis, we briefly introduce the GNSS integrity concept and the necessary background regarding the bounding method. We also provide the motivation for this work and the outline of the thesis.In the second part of the thesis, we provide the data processing method used in the thesis and provide a preliminary examination of how the error-bounding parameters evolve through time. Wefind that the error bounding parameters are relatively stable over time and that near-fault data points a↵ect the stability.In the third part of the thesis, we provide two algorithms to quantify the inherent variability in the bounding parameters for the error data. We find that the error bounding parameters have low variability based on the simulation results.In the fourth part of the thesis, we provide a single set of statistics BIAS and Ʃ to capture the quantified variability. We also provide detailed algorithms and the corresponding optimization techniques. The experimental results show that the BIAS and bias values are small and that the Ʃ and σ values are mostly below σ URA. We also show that the near-fault data points affect the stability. Finally, we explore how lowering the σURA affects the bounding parameter stability. The experimental results show that the bounding parameters become more stable after lowering the σ URA.These results provide insights into the stability of GNSS clock and ephemeris errors and can be used to aid the development of ARAIM.
Subject Added Entry-Topical Term  
Data processing.
Subject Added Entry-Topical Term  
Global positioning systems--GPS.
Subject Added Entry-Topical Term  
Navigation systems.
Subject Added Entry-Topical Term  
Error analysis.
Subject Added Entry-Topical Term  
Satellites.
Subject Added Entry-Topical Term  
Normal distribution.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Mathematics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643573

MARC

 008240221s2023        ulk                      00        kor
■001000016934530
■00520240214101622
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380483605
■035    ▼a(MiAaPQ)AAI30615120
■035    ▼a(MiAaPQ)STANFORDrz006yk2437
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aLiu,  Xinwei.
■24510▼aCharacterization  of  the  Clock  and  Ephemeris  Error  Distributions  of  the  Global  Satellite  Navigation  System  (GNSS)▼h[electronic  resource]
■260    ▼a[S.l.]▼bStanford  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(70  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  Walter,  Todd.
■5021  ▼aThesis  (M.E.)--Stanford  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aWith  the  rapid  development  and  the  broadened  usage  of  GNSS  technology,  it  becomes  increas-  ingly  important  to  ensure  the  safety  of  the  positioning,  navigation.  and  timing  provided  by  GNSS.  Concepts  such  as  Advanced  Receiver  Autonomous  Integrity  Monitoring  (ARAIM)  are  designed  to  provide  integrity  guarantees  for  this  purpose.  These  concepts  rely  ou  the  characterization  of  the  errors.  Reliable  upper  bounds  can  be  placed  on  the  potential  errors  in  the  positioning  and  timing  estimates.  As  more  navigation  signals  are  incorporated,  it  becomes  more  likely  that  one  or  more  signals  may  contain  a  significant  error.  Further,  different  error  characteristics  are  expected  to  be  encountered  with  new  constellations  and  new  signals.Multiple  frequencies  allow  the  near  elimination  of  ionospheric  errors,  leaving  satellite  clock  and  ephemeris  error  as  one  of  the  largest  potential  error  sources.  Therefore  more  emphasis  is  put  on  characterizing  the  clock  and  ephemeris  errors.To  shed  light  on  the  satellite  clock  and  ephemeris  error  behavior,  we  focus  on  characterizing  the  behavior  of  nominal  satellite  clock  and  ephemeris  errors  using  Gaussian  bounding  parameters  bias  and  σ  .  The  errors  are  normalized  by  the  user  range  accuracy  (σURA).  The  bias  and    parameters  correspond  to  the  Gaussian  mean  and  standard  deviation,  respectively.  In  particular,  we  investigate  the  inherent  variability  of  the  Gaussian  error  bounding  parameters  and  the  stability  of  the  parameters  with  respect  to  diferent  partitions  such  as  time,  diferent  space  vehicle  numbers,  diferent  user  range  accuracy,  etc.  To  do  so,  we  provide  two  algorithms  to  quantify  the  inherent  variability  of  the  bounding  parameters.  We  also  provide  an  algorithm  to  capture  this  variability  using  a  single  set  of  statistics  corresponding  to  the  Gaussian  mean  and  standard  deviation.  We  call  these  BIASand  Ʃ.In  the  first  part  of  the  thesis,  we  briefly  introduce  the  GNSS  integrity  concept  and  the  necessary  background  regarding  the  bounding  method.  We  also  provide  the  motivation  for  this  work  and  the  outline  of  the  thesis.In  the  second  part  of  the  thesis,  we  provide  the  data  processing  method  used  in  the  thesis  and  provide  a  preliminary  examination  of  how  the  error-bounding  parameters  evolve  through  time.  Wefind  that  the  error  bounding  parameters  are  relatively  stable  over  time  and  that  near-fault  data  points  a↵ect  the  stability.In  the  third  part  of  the  thesis,  we  provide  two  algorithms  to  quantify  the  inherent  variability  in  the  bounding  parameters  for  the  error  data.  We  find  that  the  error  bounding  parameters  have  low  variability  based  on  the  simulation  results.In  the  fourth  part  of  the  thesis,  we  provide  a  single  set  of  statistics  BIAS  and  Ʃ  to  capture  the  quantified  variability.  We  also  provide  detailed  algorithms  and  the  corresponding  optimization  techniques.  The  experimental  results  show  that  the  BIAS  and  bias  values  are  small  and  that  the  Ʃ  and    σ  values  are  mostly  below  σ  URA.  We  also  show  that  the  near-fault  data  points  affect  the  stability.  Finally,  we  explore  how  lowering  the  σURA  affects  the  bounding  parameter  stability.  The  experimental  results  show  that  the  bounding  parameters  become  more  stable  after  lowering  the  σ  URA.These  results  provide  insights  into  the  stability  of  GNSS  clock  and  ephemeris  errors  and  can  be  used  to  aid  the  development  of  ARAIM.
■590    ▼aSchool  code:  0212.
■650  4▼aData  processing.
■650  4▼aGlobal  positioning  systems--GPS.
■650  4▼aNavigation  systems.
■650  4▼aError  analysis.
■650  4▼aSatellites.
■650  4▼aNormal  distribution.
■650  4▼aAerospace  engineering.
■650  4▼aMathematics.
■690    ▼a0538
■690    ▼a0405
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0212
■791    ▼aM.E.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934530▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0029472 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치