본문

서브메뉴

Sparsification, Online Optimization, and an Almost-Linear Time Algorithm for Maximum Flow- [electronic resource]
Sparsification, Online Optimization, and an Almost-Linear Time Algorithm for Maximum Flow ...
Sparsification, Online Optimization, and an Almost-Linear Time Algorithm for Maximum Flow- [electronic resource]

상세정보

Material Type  
 학위논문
 
0016934520
Date and Time of Latest Transaction  
20240214101621
ISBN  
9798380482769
DDC  
515
Author  
Liu, Yang.
Title/Author  
Sparsification, Online Optimization, and an Almost-Linear Time Algorithm for Maximum Flow - [electronic resource]
Publish Info  
[S.l.] : Stanford University., 2023
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Material Info  
1 online resource(302 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Sidford, Aaron;Vondrak, Jan;Charikar, Moses.
학위논문주기  
Thesis (Ph.D.)--Stanford University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Abstracts/Etc  
요약This thesis designs efficient algorithms for combinatorial and continuous optimization problems. By combining new techniques developed in this thesis pertaining to iterative methods, dynamic algorithms, and high-dimensional geometry, we give an almost-linear-time algorithm that computes an exact maximum flow and minimum cost flows in directed graphs. Our insights lead to algorithms for broader classes of combinatorial and continuous optimization problems including online discrepancy minimization, regression, and dynamic maxflow.In the first part of the thesis we study iterative methods, which are procedures which solve an optimization problem through a sequence of simpler subproblems. By understanding the geometry of the underlying optimization problem, we give iterative methods with improved convergence rates and runtimes for the problems of ℓpregression, maximum flow, and mincost flow.In the second part of the thesis we study dynamic algorithms and online optimization which naturally arise from studying iterative methods. In particular, we give the improved algorithms that maintain an approximate maximum flow in dynamic graphs undergoing edge insertions, and also nearly-optimal algorithms for minimizing the discrepancy of vectors arriving online.In the third part of the thesis, we study sparsification problems motivated by high-dimensional geometry. The goal of sparsification is to reduce the size of an objective while approximately maintaining the desired properties, such as the value on all inputs. We give improved and nearlyoptimal size bounds for sparsification of several objectives including spectral hypergraph energies and sums of symmetric submodular functions. Finally, we give nearly-linear size bounds for sparsification of generalized linear models satisfying natural bounds on their growth, which imply nearly-optimal algorithms for solving ℓp-regression for p ∈ (1, 2].This thesis contains material from the papers [KLS20,ALS21,LSS22,CKL+22, JLS22b, JLS22a, BLS23, JLLS23b, JLLS23a].
Subject Added Entry-Topical Term  
Graphs.
Subject Added Entry-Topical Term  
Iterative methods.
Subject Added Entry-Topical Term  
Convex analysis.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Linear programming.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Mathematics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
소장사항  
202402 2024
Control Number  
joongbu:643562

MARC

 008240221s2023        ulk                      00        kor
■001000016934520
■00520240214101621
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380482769
■035    ▼a(MiAaPQ)AAI30615100
■035    ▼a(MiAaPQ)STANFORDtn858wg4267
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a515
■1001  ▼aLiu,  Yang.
■24510▼aSparsification,  Online  Optimization,  and  an  Almost-Linear  Time  Algorithm  for  Maximum  Flow▼h[electronic  resource]
■260    ▼a[S.l.]▼bStanford  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(302  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  Sidford,  Aaron;Vondrak,  Jan;Charikar,  Moses.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThis  thesis  designs  efficient  algorithms  for  combinatorial  and  continuous  optimization  problems.  By  combining  new  techniques  developed  in  this  thesis  pertaining  to  iterative  methods,  dynamic  algorithms,  and  high-dimensional  geometry,  we  give  an  almost-linear-time  algorithm  that  computes  an  exact  maximum  flow  and  minimum  cost  flows  in  directed  graphs.  Our  insights  lead  to  algorithms  for  broader  classes  of  combinatorial  and  continuous  optimization  problems  including  online  discrepancy  minimization,  regression,  and  dynamic  maxflow.In  the  first  part  of  the  thesis  we  study  iterative  methods,  which  are  procedures  which  solve  an  optimization  problem  through  a  sequence  of  simpler  subproblems.  By  understanding  the  geometry  of  the  underlying  optimization  problem,  we  give  iterative  methods  with  improved  convergence  rates  and  runtimes  for  the  problems  of  ℓpregression,  maximum  flow,  and  mincost  flow.In  the  second  part  of  the  thesis  we  study  dynamic  algorithms  and  online  optimization  which  naturally  arise  from  studying  iterative  methods.  In  particular,  we  give  the  improved  algorithms  that  maintain  an  approximate  maximum  flow  in  dynamic  graphs  undergoing  edge  insertions,  and  also  nearly-optimal  algorithms  for  minimizing  the  discrepancy  of  vectors  arriving  online.In  the  third  part  of  the  thesis,  we  study  sparsification  problems  motivated  by  high-dimensional  geometry.  The  goal  of  sparsification  is  to  reduce  the  size  of  an  objective  while  approximately  maintaining  the  desired  properties,  such  as  the  value  on  all  inputs.  We  give  improved  and  nearlyoptimal  size  bounds  for  sparsification  of  several  objectives  including  spectral  hypergraph  energies  and  sums  of  symmetric  submodular  functions.  Finally,  we  give  nearly-linear  size  bounds  for  sparsification  of  generalized  linear  models  satisfying  natural  bounds  on  their  growth,  which  imply  nearly-optimal  algorithms  for  solving  ℓp-regression  for  p  ∈  (1,  2].This  thesis  contains  material  from  the  papers  [KLS20,ALS21,LSS22,CKL+22,  JLS22b,  JLS22a,  BLS23,  JLLS23b,  JLLS23a].
■590    ▼aSchool  code:  0212.
■650  4▼aGraphs.
■650  4▼aIterative  methods.
■650  4▼aConvex  analysis.
■650  4▼aDesign.
■650  4▼aLinear  programming.
■650  4▼aEnergy.
■650  4▼aGeometry.
■650  4▼aMathematics.
■690    ▼a0791
■690    ▼a0389
■690    ▼a0405
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934520▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0029467 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치