본문

서브메뉴

Investigation of Multiple Charging Phenomenon and Gas-phase Ion/Ion Reactions for Biological/Synthetic Polymers and Glycolipids- [electronic resource]
내용보기
Investigation of Multiple Charging Phenomenon and Gas-phase Ion/Ion Reactions for Biological/Synthetic Polymers and Glycolipids- [electronic resource]
자료유형  
 학위논문
Control Number  
0016932733
International Standard Book Number  
9798379842420
Dewey Decimal Classification Number  
600
Main Entry-Personal Name  
Chao, Hsi-Chun.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(245 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: McLuckey, Scott A.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Mass spectrometry (MS) is one of the most commonly used analytical techniques in bioanalytical analysis, allowing scientists to characterize molecules with very diverse chemical features. The advance in ionization strategies significantly improves the potential in using MS for that purpose, especially electrospray ionization (ESI) can generate ions directly from solution in ambient conditions, showing high flexibility in coupling with other techniques. Moreover, a hallmark of the ESI of large polymeric molecules is also its tendency to generate a distribution of charge states based on their chemical characteristics, allowing us to exploit the multiple charging phenomenon in various applications.This dissertation introduces the relationships between ESI and multiple charging phenomena with different proposed ionization models, and how condensed-phase and gas-phase approaches affect the multiple charging phenomenon. Moreover, multiply charged ions permit gas-phase ion/ion reactions to occur without neutralizing the ions. Therefore, various ion/ion reactions can be utilized for distinct analytical purposes. Objectively, this dissertation focuses on the investigation of the multiple charging phenomenon from ESI-MS, and the applications from taking the multiply charged ions to perform gas-phase ion chemistry in order to a) manipulate the charges of the targeted ions; b) invert the polarity of the targeted ions; c) and characterization of the ions from the gas-phase ion/ion reactions.The first work demonstrates how multiple components (i.e., complicated mixtures) lead to a highly congested spectrum of ions with overlapped m/z values, resulting from the multiple charging phenomenon after the ESI process. Utilizing ionic reactions can de-congest the spectra via manipulating the charges of the ions to separate the overlapped signals. A universal spectral pattern in the ESI mass spectra is observed while analyzing multiply-charged homopolymers. Various parameters, such as the charges of the ions, widths of polymer distributions, monomer mass, and cationizing agent masses, are investigated to show how they can affect the appearance of the unique patterns, which condense the information of the overall distribution of the homopolymers. Combined with gas-phase charge reduction (i.e., proton transfer reaction), we can characterize the size distribution of polydisperse homopolymer samples.Second, a novel type charge inversion ion/ion reaction summarizing the conversion of multiply charged protein ions to their opposite polarity and still holds multiple charges is reported. The reaction occurs via a single ion/ion collision with highly charged reagent ions, which we usually obtain from biological relevant polymers. Hyaluronic acid (HAs) anions and polyethylenimine (PEI) cations are used as the charge inversion reagents to react with protein ions. Remarkably, inversion of high absolute charge (up to 41) from the reaction is demonstrated. All mechanisms for ion/ion charge inversion involve low-energy ions proceeding via the formation of a long-lived complex. Factors that underlie the charge inversion of protein ions to the opposite polarity with high charge states in reaction with those reagent ions are hypothesized to include: (i) the relatively high charge densities of the HA anions and PEI cations that facilitate the extraction/donation of multiple protons from/to the protein leading to multiply charged protein anions/cations, (ii) the relatively high sum of absolute charges of the reactants that leads to high initial energies in the ion/ion complex, and (iii) the relatively high charge of the ion/ion complex following the multiple proton transfers that tends to destabilize the complex.
Subject Added Entry-Topical Term  
Polymers.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Mass spectrometry.
Subject Added Entry-Topical Term  
Scientific imaging.
Subject Added Entry-Topical Term  
Performance evaluation.
Subject Added Entry-Topical Term  
Ions.
Subject Added Entry-Topical Term  
Cities.
Subject Added Entry-Topical Term  
Polymerization.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Polymer chemistry.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643543
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0029445 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치