본문

서브메뉴

Residual Intersections and Their Generators- [electronic resource]
Residual Intersections and Their Generators- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932785
International Standard Book Number  
9798379840334
Dewey Decimal Classification Number  
512
Main Entry-Personal Name  
Tarasova, Yevgeniya Vladimirov.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(90 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Ulrich, Bernd.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The goal of this dissertation is to broaden the classes of ideals for which the generators of residual intersections are known. This is split into two main parts.The first part is Chapter 5, where we prove that, for an ideal I in a local Cohen-Macaulay ring R, under suitable technical assumptions, we are able to express s-residual intersections, for s ≥ µ(I) − 2, in terms of (µ(I) − 2)-residual intersections. This result implies that s-residual intersections can be expressed in terms of links, if µ(I) ≤ ht(I) + 3 and some other hypotheses are satisfied. In Chapter 5, we prove our result using two different methods and two different sets of technical assumptions on the depth conditions satisfied by the ideal I. For Section 5.2 and Section 5.3 we use the properties of Fitting ideals and methods developed in [33] to prove our main result. In these sections, we require I to satisfy the Gs condition and be weakly (s − 2)-residually S2. In Section 5.4, we prove analogous results to those in Section 5.2 and Section 5.3 using disguised residual intersections, a notion developed by Bouca and Hassansadeh in [5].The second part is Chapter 6 where we prove that the n-residual intersections of ideals generated by maximal minors of a 2xn generic matrix for n ≥ 4 are sums of links. To prove this, we require a series of technical results. We begin by proving the main theorem for this chapter in a special case, using the results of Section 6.1 to compute the generators of the relevant links in a our special case, and then using these generators to compute the Grobner Basis for the sum of links in Section 6.2. The computation of the Grobner basis, as well as an application of graph theoretic results about binomial edge ideals [17], allow us to show that our main theorem holds in this special case. Lastly, we conclude our proof in Section 6.3, where we show that n-residual intersections of ideals generated by maximal minors of 2 x n generic matrices commute with specialization maps, and use this to show that the generic n-residual intersections of ideals generated by maximal minors of a 2 x n generic matrix for n≥ 4 are sums of links. This allows us to prove the main theorem of Chapter 6.
Subject Added Entry-Topical Term  
Algebra.
Subject Added Entry-Topical Term  
Specialization.
Subject Added Entry-Topical Term  
Mathematics.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643385

MARC

 008240221s2022        ulk                      00        kor
■001000016932785
■00520240214100545
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379840334
■035    ▼a(MiAaPQ)AAI30506025
■035    ▼a(MiAaPQ)Purdue20372706
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a512
■1001  ▼aTarasova,  Yevgeniya  Vladimirov.
■24510▼aResidual  Intersections  and  Their  Generators▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(90  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Ulrich,  Bernd.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  goal  of  this  dissertation  is  to  broaden  the  classes  of  ideals  for  which  the  generators  of  residual  intersections  are  known.  This  is  split  into  two  main  parts.The  first  part  is  Chapter  5,  where  we  prove  that,  for  an  ideal  I  in  a  local  Cohen-Macaulay  ring  R,  under  suitable  technical  assumptions,  we  are  able  to  express  s-residual  intersections,  for  s  ≥  µ(I)  −  2,  in  terms  of  (µ(I)  −  2)-residual  intersections.  This  result  implies  that  s-residual  intersections  can  be  expressed  in  terms  of  links,  if  µ(I)  ≤  ht(I)  +  3  and  some  other  hypotheses  are  satisfied.  In  Chapter  5,  we  prove  our  result  using  two  different  methods  and  two  different  sets  of  technical  assumptions  on  the  depth  conditions  satisfied  by  the  ideal  I.  For  Section  5.2  and  Section  5.3  we  use  the  properties  of  Fitting  ideals  and  methods  developed  in  [33]  to  prove  our  main  result.  In  these  sections,  we  require  I  to  satisfy  the  Gs  condition  and  be  weakly  (s  −  2)-residually  S2.  In  Section  5.4,  we  prove  analogous  results  to  those  in  Section  5.2  and  Section  5.3  using  disguised  residual  intersections,  a  notion  developed  by  Bouca  and  Hassansadeh  in  [5].The  second  part  is  Chapter  6  where  we  prove  that  the  n-residual  intersections  of  ideals  generated  by  maximal  minors  of  a  2xn  generic  matrix  for  n  ≥  4  are  sums  of  links.  To  prove  this,  we  require  a  series  of  technical  results.  We  begin  by  proving  the  main  theorem  for  this  chapter  in  a  special  case,  using  the  results  of  Section  6.1  to  compute  the  generators  of  the  relevant  links  in  a  our  special  case,  and  then  using  these  generators  to  compute  the  Grobner  Basis  for  the  sum  of  links  in  Section  6.2.  The  computation  of  the  Grobner  basis,  as  well  as  an  application  of  graph  theoretic  results  about  binomial  edge  ideals  [17],  allow  us  to  show  that  our  main  theorem  holds  in  this  special  case.  Lastly,  we  conclude  our  proof  in  Section  6.3,  where  we  show  that  n-residual  intersections  of  ideals  generated  by  maximal  minors  of  2  x  n  generic  matrices  commute  with  specialization  maps,  and  use  this  to  show  that  the  generic  n-residual  intersections  of  ideals  generated  by  maximal  minors  of  a  2  x  n  generic  matrix  for  n≥  4  are  sums  of  links.  This  allows  us  to  prove  the  main  theorem  of  Chapter  6.
■590    ▼aSchool  code:  0183.
■650  4▼aAlgebra.
■650  4▼aSpecialization.
■650  4▼aMathematics.
■690    ▼a0405
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932785▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0029290 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치