본문

서브메뉴

Multiple Learning for Generalized Linear Models in Big Data- [electronic resource]
Multiple Learning for Generalized Linear Models in Big Data- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932687
International Standard Book Number  
9798379837310
Dewey Decimal Classification Number  
301.424
Main Entry-Personal Name  
Liu, Xiang.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2021
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2021
Physical Description  
1 online resource(84 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: A.
General Note  
Advisor: Yang, Baijian;Zhang, Tonglin.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2021.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Big data is an enabling technology in digital transformation. It perfectly complements ordinary linear models and generalized linear models, as training well-performed ordinary linear models and generalized linear models require huge amounts of data. With the help of big data, ordinary and generalized linear models can be well-trained and thus offer better services to human beings. However, there are still many challenges to address for training ordinary linear models and generalized linear models in big data. One of the most prominent challenges is the computational challenges. Computational challenges refer to the memory inflation and training inefficiency issues occurred when processing data and training models. Hundreds of algorithms were proposed by the experts to alleviate/overcome the memory inflation issues. However, the solutions obtained are locally optimal solutions. Additionally, most of the proposed algorithms require loading the dataset to RAM many times when updating the model parameters. If multiple model hyper-parameters needed to be computed and compared, e.g. ridge regression, parallel computing techniques are applied in practice. Thus, multiple learning with sufficient statistics arrays are proposed to tackle the memory inflation and training inefficiency issues.
Subject Added Entry-Topical Term  
Independent variables.
Subject Added Entry-Topical Term  
Mean square errors.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Random access memory.
Subject Added Entry-Topical Term  
Dependent variables.
Subject Added Entry-Topical Term  
Iterative methods.
Subject Added Entry-Topical Term  
Optimization techniques.
Subject Added Entry-Topical Term  
Disk drives.
Subject Added Entry-Topical Term  
Normal distribution.
Subject Added Entry-Topical Term  
Data processing.
Subject Added Entry-Topical Term  
Hard disks.
Subject Added Entry-Topical Term  
University students.
Subject Added Entry-Topical Term  
Cloud computing.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Higher education.
Subject Added Entry-Topical Term  
Information technology.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Web studies.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643320

MARC

 008240221s2021        ulk                      00        kor
■001000016932687
■00520240214100532
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379837310
■035    ▼a(MiAaPQ)AAI30505370
■035    ▼a(MiAaPQ)Purdue17153546
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a301.424
■1001  ▼aLiu,  Xiang.
■24510▼aMultiple  Learning  for  Generalized  Linear  Models  in  Big  Data▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2021
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2021
■300    ▼a1  online  resource(84  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  A.
■500    ▼aAdvisor:  Yang,  Baijian;Zhang,  Tonglin.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2021.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aBig  data  is  an  enabling  technology  in  digital  transformation.  It  perfectly  complements  ordinary  linear  models  and  generalized  linear  models,  as  training  well-performed  ordinary  linear  models  and  generalized  linear  models  require  huge  amounts  of  data.  With  the  help  of  big  data,  ordinary  and  generalized  linear  models  can  be  well-trained  and  thus  offer  better  services  to  human  beings.  However,  there  are  still  many  challenges  to  address  for  training  ordinary  linear  models  and  generalized  linear  models  in  big  data.  One  of  the  most  prominent  challenges  is  the  computational  challenges.  Computational  challenges  refer  to  the  memory  inflation  and  training  inefficiency  issues  occurred  when  processing  data  and  training  models.  Hundreds  of  algorithms  were  proposed  by  the  experts  to  alleviate/overcome  the  memory  inflation  issues.  However,  the  solutions  obtained  are  locally  optimal  solutions.  Additionally,  most  of  the  proposed  algorithms  require  loading  the  dataset  to  RAM  many  times  when  updating  the  model  parameters.  If  multiple  model  hyper-parameters  needed  to  be  computed  and  compared,  e.g.  ridge  regression,  parallel  computing  techniques  are  applied  in  practice.  Thus,  multiple  learning  with  sufficient  statistics  arrays  are  proposed  to  tackle  the  memory  inflation  and  training  inefficiency  issues.
■590    ▼aSchool  code:  0183.
■650  4▼aIndependent  variables.
■650  4▼aMean  square  errors.
■650  4▼aStatistics.
■650  4▼aRandom  access  memory.
■650  4▼aDependent  variables.
■650  4▼aIterative  methods.
■650  4▼aOptimization  techniques.
■650  4▼aDisk  drives.
■650  4▼aNormal  distribution.
■650  4▼aData  processing.
■650  4▼aHard  disks.
■650  4▼aUniversity  students.
■650  4▼aCloud  computing.
■650  4▼aComputer  science.
■650  4▼aHigher  education.
■650  4▼aInformation  technology.
■650  4▼aMathematics.
■650  4▼aWeb  studies.
■690    ▼a0463
■690    ▼a0800
■690    ▼a0984
■690    ▼a0745
■690    ▼a0489
■690    ▼a0338
■690    ▼a0405
■690    ▼a0646
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2021
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932687▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0029213 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치