본문

서브메뉴

Maleic Acid as a Versatile Catalyst for Biorefining- [electronic resource]
Maleic Acid as a Versatile Catalyst for Biorefining- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932655
International Standard Book Number  
9798379835392
Dewey Decimal Classification Number  
641.105
Main Entry-Personal Name  
Overton, Jonathan C.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2020
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2020
Physical Description  
1 online resource(89 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Mosier, Nathan S.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2020.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Producing bio-based commodity chemicals, such as polymers and fuels, is of significant interest as petroleum reserves continue to decline. A major roadblock to bio-based production is high processing costs. These costs are associated with the need for highly-specialized catalysts to produce bio-based commodity chemicals from agricultural products and wastes. This prevents bioprocessing facilities from fully taking advantage of commodities of scale, where purchasing materials in greater quantities reduces the material cost. Discovering catalysts capable of being used in multiple production pathways could reduce the per unit processing of a biorefinery. Recent works have shown that maleic acid can be used for multiple conversion reactions of plant material to valuable products: xylose to furfural, glucose to hydroxymethylfurfural (HMF), and the pretreatment of lignocellulosic material for second generation biofuel production. This work evaluates the use of maleic acid as a catalyst for producing HMF from corn starch, with a specific focus on reducing operating costs. Additionally, the use of maleic acid as a liquefaction catalyst for producing corn stover slurries is tested.To evaluate HMF production from starch, a combined computational and experimental approach is used. Through modelling and experimental validation, molar HMF yields of ~30% are reached by incorporating dilute dimethylsulfoxide and acetonitrile into the reaction mixture. However, HMF yield was limited by low stability in the reaction media. The addition of activated carbon to the reactor overcomes challenges with second order side reactions, resulting in HMF selling prices that are competitive with similar petroleum-derived chemicals. The key technical roadblocks to commercialization of HMF production are identified as solvent recycling and HMF separation efficiency in a sensitivity analysis. During liquefaction of corn stover, maleic acid was found to reduce the yield stress required to begin slurry flow through a pipe. However, a reduction in the free water content of the reactor through binding of water in the matrix of biomass limited liquefaction, resulting in solids concentrations not financially feasible at scale. To overcome this, maleic acid treatment was performed at solids contents of 25%, followed by a water removal step and enzymatic liquefaction at 30% solids. Yield stress was reduced from 6000 Pa for untreated samples to ~50 Pa for samples treated with maleic acid and enzymes sequentially. Such treatment reduces the challenges associated with feeding solid biomass into a pretreatment reactor.Additionally, reduced slurry yield stress results in lower capital costs, since smaller pumps can be used in the production facility.This work provides a step forward in transitioning away from a petroleum-based economy to a bio-based economy without significant disruptions in product pricing and availability.
Subject Added Entry-Topical Term  
Feeds.
Subject Added Entry-Topical Term  
Agricultural production.
Subject Added Entry-Topical Term  
Ethanol.
Subject Added Entry-Topical Term  
Competition.
Subject Added Entry-Topical Term  
Agriculture.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643290

MARC

 008240221s2020        ulk                      00        kor
■001000016932655
■00520240214100527
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379835392
■035    ▼a(MiAaPQ)AAI30505073
■035    ▼a(MiAaPQ)Purdue11918208
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a641.105
■1001  ▼aOverton,  Jonathan  C.
■24510▼aMaleic  Acid  as  a  Versatile  Catalyst  for  Biorefining▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2020
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2020
■300    ▼a1  online  resource(89  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Mosier,  Nathan  S.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2020.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aProducing  bio-based  commodity  chemicals,  such  as  polymers  and  fuels,  is  of  significant  interest  as  petroleum  reserves  continue  to  decline.  A  major  roadblock  to  bio-based  production  is  high  processing  costs.  These  costs  are  associated  with  the  need  for  highly-specialized  catalysts  to  produce  bio-based  commodity  chemicals  from  agricultural  products  and  wastes.  This  prevents  bioprocessing  facilities  from  fully  taking  advantage  of  commodities  of  scale,  where  purchasing  materials  in  greater  quantities  reduces  the  material  cost.  Discovering  catalysts  capable  of  being  used  in  multiple  production  pathways  could  reduce  the  per  unit  processing  of  a  biorefinery.  Recent  works  have  shown  that  maleic  acid  can  be  used  for  multiple  conversion  reactions  of  plant  material  to  valuable  products:  xylose  to  furfural,  glucose  to  hydroxymethylfurfural  (HMF),  and  the  pretreatment  of  lignocellulosic  material  for  second  generation  biofuel  production.  This  work  evaluates  the  use  of  maleic  acid  as  a  catalyst  for  producing  HMF  from  corn  starch,  with  a  specific  focus  on  reducing  operating  costs.  Additionally,  the  use  of  maleic  acid  as  a  liquefaction  catalyst  for  producing  corn  stover  slurries  is  tested.To  evaluate  HMF  production  from  starch,  a  combined  computational  and  experimental  approach  is  used.  Through  modelling  and  experimental  validation,  molar  HMF  yields  of  ~30%  are  reached  by  incorporating  dilute  dimethylsulfoxide  and  acetonitrile  into  the  reaction  mixture.  However,  HMF  yield  was  limited  by  low  stability  in  the  reaction  media.  The  addition  of  activated  carbon  to  the  reactor  overcomes  challenges  with  second  order  side  reactions,  resulting  in  HMF  selling  prices  that  are  competitive  with  similar  petroleum-derived  chemicals.  The  key  technical  roadblocks  to  commercialization  of  HMF  production  are  identified  as  solvent  recycling  and  HMF  separation  efficiency  in  a  sensitivity  analysis.  During  liquefaction  of  corn  stover,  maleic  acid  was  found  to  reduce  the  yield  stress  required  to  begin  slurry  flow  through  a  pipe.  However,  a  reduction  in  the  free  water  content  of  the  reactor  through  binding  of  water  in  the  matrix  of  biomass  limited  liquefaction,  resulting  in  solids  concentrations  not  financially  feasible  at  scale.  To  overcome  this,  maleic  acid  treatment  was  performed  at  solids  contents  of  25%,  followed  by  a  water  removal  step  and  enzymatic  liquefaction  at  30%  solids.  Yield  stress  was  reduced  from  6000  Pa  for  untreated  samples  to  ~50  Pa  for  samples  treated  with  maleic  acid  and  enzymes  sequentially.  Such  treatment  reduces  the  challenges  associated  with  feeding  solid  biomass  into  a  pretreatment  reactor.Additionally,  reduced  slurry  yield  stress  results  in  lower  capital  costs,  since  smaller  pumps  can  be  used  in  the  production  facility.This  work  provides  a  step  forward  in  transitioning  away  from  a  petroleum-based  economy  to  a  bio-based  economy  without  significant  disruptions  in  product  pricing  and  availability.
■590    ▼aSchool  code:  0183.
■650  4▼aFeeds.
■650  4▼aAgricultural  production.
■650  4▼aEthanol.
■650  4▼aCompetition.
■650  4▼aAgriculture.
■690    ▼a0473
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2020
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932655▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0029197 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치