본문

서브메뉴

Data Analysis Tools for Statistical Non-Experts- [electronic resource]
Data Analysis Tools for Statistical Non-Experts - [electronic resource]
Data Analysis Tools for Statistical Non-Experts- [electronic resource]

상세정보

Material Type  
 학위논문
 
0016934856
Date and Time of Latest Transaction  
20240214101703
ISBN  
9798380333542
DDC  
004
Author  
Jun, Eunice.
Title/Author  
Data Analysis Tools for Statistical Non-Experts - [electronic resource]
Publish Info  
[S.l.] : University of Washington., 2023
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Material Info  
1 online resource(244 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Heer, Jeffrey;Just, Rene.
학위논문주기  
Thesis (Ph.D.)--University of Washington, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Abstracts/Etc  
요약Data analysis is critical to science, public policy, and business. Despite their importance, statistical analyses are difficult to author, especially for researchers with expertise outside of statistics. Existing statistical tools, prioritizing mathematical expressivity and computational control, are low-level while researchers' motivating questions and hypotheses are high-level. The process of translating researchers' questions and hypotheses into low-level statistical code is error-prone.This thesis views statistical analysis authoring as a sensemaking process that involves grappling with domain knowledge, statistics, and programming concerns. To this end, I develop a framework characterizing the cognitive and operational steps involved in translating research questions into statistical analysis code, a process I term hypothesis formalization. I also design, implement, and evaluate three new domain-specific languages (DSLs) and runtimes that embody hypothesis formalization. The DSLs leverage automated reasoning to compile high-level specifications of analysis intent into analysis code.The first of these, Tea, is used to author Null Hypothesis Significance Tests. Analysts specify their study design, assumptions about data, and hypotheses in Tea's DSL. Tea represents statistical test selection as constraint satisfaction, so it compiles an analyst's specification into a system of constraints to identify a set of valid statistical tests. A benchmark comparison found that Tea's test selection is comparable to that of experts and better than a naive test selection approach.I also introduce Tisane, a system for authoring generalized linear models with or without mixed effects. Analysts specify their domain knowledge in the form of a conceptual model, data collection details, and focus of analysis in Tisane's DSL. Internally, Tisane represents this conceptual model as a graph. Tisane traverses the graph to derive a space of statistical models based on causal reasoning recommendations. Then, in an interactive disambiguation process, Tisane involves analysts in narrowing the space of possible statistical models to one final output statistical modeling script. In case studies, we found that Tisane shifted researchers' focus from analysis details to their research questions and streamlined the analysis authoring process. To further improve the usability of the Tisane DSL, I conducted an exploratory elicitation study using Tisane as a probe, designed and implemented an improved version of Tisane as rTisane, and then evaluated rTisane in a controlled lab study. The summative evaluation demonstrated that rTisane's DSL helped analysts introspect on their implicit domain assumptions more deeply, stay true to their analysis intent, and produce statistical models that better fit the data. In all, these systems and evaluations provide evidence that conceptually focused DSLs coupled with automated reasoning can lower the barriers to valid analyses.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Cognitive psychology.
Subject Added Entry-Topical Term  
Computer engineering.
Index Term-Uncontrolled  
Data analysis
Index Term-Uncontrolled  
End-user software engineering
Index Term-Uncontrolled  
Human-computer interaction
Index Term-Uncontrolled  
Programming languages
Index Term-Uncontrolled  
Sensemaking
Index Term-Uncontrolled  
Statistical software
Added Entry-Corporate Name  
University of Washington Computer Science and Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
소장사항  
202402 2024
Control Number  
joongbu:643018

MARC

 008240221s2023        ulk                      00        kor
■001000016934856
■00520240214101703
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380333542
■035    ▼a(MiAaPQ)AAI30635922
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aJun,  Eunice.
■24510▼aData  Analysis  Tools  for  Statistical  Non-Experts▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Washington.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(244  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Heer,  Jeffrey;Just,  Rene.
■5021  ▼aThesis  (Ph.D.)--University  of  Washington,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aData  analysis  is  critical  to  science,  public  policy,  and  business.  Despite  their  importance,  statistical  analyses  are  difficult  to  author,  especially  for  researchers  with  expertise  outside  of  statistics.  Existing  statistical  tools,  prioritizing  mathematical  expressivity  and  computational  control,  are  low-level  while  researchers'  motivating  questions  and  hypotheses  are  high-level.  The  process  of  translating  researchers'  questions  and  hypotheses  into  low-level  statistical  code  is  error-prone.This  thesis  views  statistical  analysis  authoring  as  a  sensemaking  process  that  involves  grappling  with  domain  knowledge,  statistics,  and  programming  concerns.  To  this  end,  I  develop  a  framework  characterizing  the  cognitive  and  operational  steps  involved  in  translating  research  questions  into  statistical  analysis  code,  a  process  I  term  hypothesis  formalization.  I  also  design,  implement,  and  evaluate  three  new  domain-specific  languages  (DSLs)  and  runtimes  that  embody  hypothesis  formalization.  The  DSLs  leverage  automated  reasoning  to  compile  high-level  specifications  of  analysis  intent  into  analysis  code.The  first  of  these,  Tea,  is  used  to  author  Null  Hypothesis  Significance  Tests.  Analysts  specify  their  study  design,  assumptions  about  data,  and  hypotheses  in  Tea's  DSL.  Tea  represents  statistical  test  selection  as  constraint  satisfaction,  so  it  compiles  an  analyst's  specification  into  a  system  of  constraints  to  identify  a  set  of  valid  statistical  tests.  A  benchmark  comparison  found  that  Tea's  test  selection  is  comparable  to  that  of  experts  and  better  than  a  naive  test  selection  approach.I  also  introduce  Tisane,  a  system  for  authoring  generalized  linear  models  with  or  without  mixed  effects.  Analysts  specify  their  domain  knowledge  in  the  form  of  a  conceptual  model,  data  collection  details,  and  focus  of  analysis  in  Tisane's  DSL.  Internally,  Tisane  represents  this  conceptual  model  as  a  graph.  Tisane  traverses  the  graph  to  derive  a  space  of  statistical  models  based  on  causal  reasoning  recommendations.  Then,  in  an  interactive  disambiguation  process,  Tisane  involves  analysts  in  narrowing  the  space  of  possible  statistical  models  to  one  final  output  statistical  modeling  script.  In  case  studies,  we  found  that  Tisane  shifted  researchers'  focus  from  analysis  details  to  their  research  questions  and  streamlined  the  analysis  authoring  process.  To  further  improve  the  usability  of  the  Tisane  DSL,  I  conducted  an  exploratory  elicitation  study  using  Tisane  as  a  probe,  designed  and  implemented  an  improved  version  of  Tisane  as  rTisane,  and  then  evaluated  rTisane  in  a  controlled  lab  study.  The  summative  evaluation  demonstrated  that  rTisane's  DSL  helped  analysts  introspect  on  their  implicit  domain  assumptions  more  deeply,  stay  true  to  their  analysis  intent,  and  produce  statistical  models  that  better  fit  the  data.  In  all,  these  systems  and  evaluations  provide  evidence  that  conceptually  focused  DSLs  coupled  with  automated  reasoning  can  lower  the  barriers  to  valid  analyses.
■590    ▼aSchool  code:  0250.
■650  4▼aComputer  science.
■650  4▼aStatistics.
■650  4▼aCognitive  psychology.
■650  4▼aComputer  engineering.
■653    ▼aData  analysis
■653    ▼aEnd-user  software  engineering
■653    ▼aHuman-computer  interaction
■653    ▼aProgramming  languages
■653    ▼aSensemaking
■653    ▼aStatistical  software
■690    ▼a0984
■690    ▼a0463
■690    ▼a0633
■690    ▼a0464
■71020▼aUniversity  of  Washington▼bComputer  Science  and  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0250
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934856▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0028928 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치