본문

서브메뉴

Essays on Managing Resources in the Sharing Economy- [electronic resource]
Essays on Managing Resources in the Sharing Economy - [electronic resource]
Essays on Managing Resources in the Sharing Economy- [electronic resource]

상세정보

Material Type  
 학위논문
 
0016931626
Date and Time of Latest Transaction  
20240214100054
ISBN  
9798379704988
DDC  
519.4
Author  
Akturk, Tahsin Deniz.
Title/Author  
Essays on Managing Resources in the Sharing Economy - [electronic resource]
Publish Info  
[S.l.] : The University of Chicago., 2023
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Material Info  
1 online resource(158 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Candogan, Ozan;Gupta, Varun.
학위논문주기  
Thesis (Ph.D.)--The University of Chicago, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Abstracts/Etc  
요약The dissertation mainly focuses on the spatial imbalance of resources observed in the sharing economy. It consists of two main chapters, with the first chapter focusing on designing policies to solve this imbalance and the second chapter focusing on evaluating the performance of easy-to-implement policies on solving this imbalance of resources. In the third chapter, we discuss possible extensions and other applications for the methodology we provided. In the first chapter, we consider the problem of managing resources in shared micro-mobility systems (bike-sharing and scooter-sharing). An important task in managing such systems is periodic repositioning/recharging/sourcing units to avoid stockouts or excess inventory at nodes with unbalanced flows. We consider a discrete-time model: each period begins with an initial inventory at each node in the network, and then customers (demand) materialize at the nodes. Each customer picks up a unit at the origin node and drops it off at a randomly sampled destination node with an origin-specific probability distribution. We model the above network inventory management problem as an infinite horizon discrete-time discounted Markov Decision Process and prove the asymptotic optimality of a novel mean-field approximation to the original MDP as the number of stations becomes large. To compute an approximately optimal policy for the mean-field dynamics, we provide an algorithm with a running time that is logarithmic in the desired optimality gap. Lastly, we compare the performance of our mean-field-based policy to state-of-the-art heuristics via numerical experiments, including experiments using Austin scooter-sharing data.The second chapter considers the joint optimization of rebalancing/sourcing inventory on a graph. We focus on the lost-sales setting with customer-induced relocations. Through a coupling analysis, we provide worst-case performance bounds, with tight instances, for policies commonly used in practice. We provide further insights into the performance of these policies and discuss cost regimes where they are effective.
Index Term-Uncontrolled  
Dynamic programming
Index Term-Uncontrolled  
Inventory management
Index Term-Uncontrolled  
Micromobility systems
Index Term-Uncontrolled  
Reusable resources
Index Term-Uncontrolled  
Sharing economy
Index Term-Uncontrolled  
Stochastic processes
Added Entry-Corporate Name  
The University of Chicago Business
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
소장사항  
202402 2024
Control Number  
joongbu:642825

MARC

 008240221s2023        ulk                      00        kor
■001000016931626
■00520240214100054
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379704988
■035    ▼a(MiAaPQ)AAI30317514
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519.4
■1001  ▼aAkturk,  Tahsin  Deniz.▼0(orcid)0000-0002-6541-6619
■24510▼aEssays  on  Managing  Resources  in  the  Sharing  Economy▼h[electronic  resource]
■260    ▼a[S.l.]▼bThe  University  of  Chicago.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(158  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Candogan,  Ozan;Gupta,  Varun.
■5021  ▼aThesis  (Ph.D.)--The  University  of  Chicago,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  dissertation  mainly  focuses  on  the  spatial  imbalance  of  resources  observed  in  the  sharing  economy.  It  consists  of  two  main  chapters,  with  the  first  chapter  focusing  on  designing  policies  to  solve  this  imbalance  and  the  second  chapter  focusing  on  evaluating  the  performance  of  easy-to-implement  policies  on  solving  this  imbalance  of  resources.  In  the  third  chapter,  we  discuss  possible  extensions  and  other  applications  for  the  methodology  we  provided. In  the  first  chapter,  we  consider  the  problem  of  managing  resources  in  shared  micro-mobility  systems  (bike-sharing  and  scooter-sharing).  An  important  task  in  managing  such  systems  is  periodic  repositioning/recharging/sourcing  units  to  avoid  stockouts  or  excess  inventory  at  nodes  with  unbalanced  flows.  We  consider  a  discrete-time  model:  each  period  begins  with  an  initial  inventory  at  each  node  in  the  network,  and  then  customers  (demand)  materialize  at  the  nodes.  Each  customer  picks  up  a  unit  at  the  origin  node  and  drops  it  off  at  a  randomly  sampled  destination  node  with  an  origin-specific  probability  distribution.  We  model  the  above  network  inventory  management  problem  as  an  infinite  horizon  discrete-time  discounted  Markov  Decision  Process  and  prove  the  asymptotic  optimality  of  a  novel  mean-field  approximation  to  the  original  MDP  as  the  number  of  stations  becomes  large.  To  compute  an  approximately  optimal  policy  for  the  mean-field  dynamics,  we  provide  an  algorithm  with  a  running  time  that  is  logarithmic  in  the  desired  optimality  gap.  Lastly,  we  compare  the  performance  of  our  mean-field-based  policy  to  state-of-the-art  heuristics  via  numerical  experiments,  including  experiments  using  Austin  scooter-sharing  data.The  second  chapter  considers  the  joint  optimization  of  rebalancing/sourcing  inventory  on  a  graph.  We  focus  on  the  lost-sales  setting  with  customer-induced  relocations.  Through  a  coupling  analysis,  we  provide  worst-case  performance  bounds,  with  tight  instances,  for  policies  commonly  used  in  practice.  We  provide  further  insights  into  the  performance  of  these  policies  and  discuss  cost  regimes  where  they  are  effective.
■590    ▼aSchool  code:  0330.
■653    ▼aDynamic  programming
■653    ▼aInventory  management
■653    ▼aMicromobility  systems
■653    ▼aReusable  resources
■653    ▼aSharing  economy
■653    ▼aStochastic  processes
■690    ▼a0796
■690    ▼a0454
■690    ▼a0310
■71020▼aThe  University  of  Chicago▼bBusiness.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0330
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931626▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0028739 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치