본문

서브메뉴

Risk, Uncertainty, and Decision Making: Insights from Ambient PM2.5 and COVID-19 Case Studies- [electronic resource]
Risk, Uncertainty, and Decision Making: Insights from Ambient PM2.5 and COVID-19 Case Studies- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932199
International Standard Book Number  
9798379603892
Dewey Decimal Classification Number  
613
Main Entry-Personal Name  
Colonna, Kyle J. .
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(161 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Evans, John S. .
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Risk assessment is the art and science of estimating risk based on the evidence which is currently available. It seeks to characterize the state of knowledge and, to the extent possible, produce probabilistic estimates of risk which provide decision makers with a sense of what is known and how well it is known. Such information allows decision makers to formally consider the tradeoffs between acting now based on imperfect information and delaying decisions to allow research studies (with the potential for reducing uncertainty) to be designed, conducted, and interpreted. Uncertainty may exist because of the unknowns that differ each time we run the same experiment (parameter or aleatory uncertainty) and/or because of more fundamental questions of basic science (model or epistemic uncertainty). In the first case, characterization of uncertainty using well-developed methods of frequentist statistics is relatively straightforward, objective, and uncontroversial. In the latter case, it becomes necessary to rely on formally elicited subjective judgments of leading experts in relevant fields.In chapter 1, we demonstrate in our review of the epidemiological evidence on mortality attributable to ambient fine particulate matter (PM2.5) exposure that the dominant uncertainties faced in efforts to estimate risk in understudied locations are epistemic in nature - e.g., what should we think about the differential toxicity of PM2.5 from various sources, the effect modification induced by various population characteristics, and what should we conclude about the sufficiency of evidence that the observed associations reflect causal relationships. In chapter 2, we utilized a method typically employed in structured expert judgment, the Classical Model, to assess the performance of probabilistic mortality forecasts (i.e., judgments) from COVID-19 models (i.e., experts). We concluded that this method has the potential to improve both public health decision making and modeling more generally. In chapter 3, we conducted a research study that aims to reduce the uncertainty inherent in the relationship between acute exposure to ambient PM2.5 and the risk for respiratory disease hospitalization in Kuwait, a region that is understudied and has very high PM2.5 concentration levels, in an effort to encourage actions to reduce exposure and minimize potential harm.
Subject Added Entry-Topical Term  
Environmental health.
Subject Added Entry-Topical Term  
Epidemiology.
Index Term-Uncontrolled  
Air quality
Index Term-Uncontrolled  
Causal inference
Index Term-Uncontrolled  
Differential toxicity
Index Term-Uncontrolled  
Effect modification
Index Term-Uncontrolled  
Forecasting
Index Term-Uncontrolled  
COVID-19
Added Entry-Corporate Name  
Harvard University Population Health Sciences
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642725

MARC

 008240221s2023        ulk                      00        kor
■001000016932199
■00520240214100426
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379603892
■035    ▼a(MiAaPQ)AAI30489536
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a613
■1001  ▼aColonna,  Kyle  J.  .▼0(orcid)0000-0003-0194-214X
■24510▼aRisk,  Uncertainty,  and  Decision  Making:  Insights  from  Ambient  PM2.5  and  COVID-19  Case  Studies▼h[electronic  resource]
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(161  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Evans,  John  S.  .
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aRisk  assessment  is  the  art  and  science  of  estimating  risk  based  on  the  evidence  which  is  currently  available.  It  seeks  to  characterize  the  state  of  knowledge  and,  to  the  extent  possible,  produce  probabilistic  estimates  of  risk  which  provide  decision  makers  with  a  sense  of  what  is  known  and  how  well  it  is  known.  Such  information  allows  decision  makers  to  formally  consider  the  tradeoffs  between  acting  now  based  on  imperfect  information  and  delaying  decisions  to  allow  research  studies  (with  the  potential  for  reducing  uncertainty)  to  be  designed,  conducted,  and  interpreted. Uncertainty  may  exist  because  of  the  unknowns  that  differ  each  time  we  run  the  same  experiment  (parameter  or  aleatory  uncertainty)  and/or  because  of  more  fundamental  questions  of  basic  science  (model  or  epistemic  uncertainty).  In  the  first  case,  characterization  of  uncertainty  using  well-developed  methods  of  frequentist  statistics  is  relatively  straightforward,  objective,  and  uncontroversial.  In  the  latter  case,  it  becomes  necessary  to  rely  on  formally  elicited  subjective  judgments  of  leading  experts  in  relevant  fields.In  chapter  1,  we  demonstrate  in  our  review  of  the  epidemiological  evidence  on  mortality  attributable  to  ambient  fine  particulate  matter  (PM2.5)  exposure  that  the  dominant  uncertainties  faced  in  efforts  to  estimate  risk  in  understudied  locations  are  epistemic  in  nature  -  e.g.,  what should  we  think  about  the  differential  toxicity  of  PM2.5  from  various  sources,  the  effect  modification  induced  by  various  population  characteristics,  and  what  should  we  conclude  about  the  sufficiency  of  evidence  that  the  observed  associations  reflect  causal  relationships.  In  chapter  2,  we  utilized  a  method  typically  employed  in  structured  expert  judgment,  the  Classical  Model,  to  assess  the  performance  of  probabilistic  mortality  forecasts  (i.e.,  judgments)  from  COVID-19  models  (i.e.,  experts).  We  concluded  that  this  method  has  the  potential  to  improve  both  public  health  decision  making  and  modeling  more  generally.  In  chapter  3,  we  conducted  a  research  study  that  aims  to  reduce  the  uncertainty  inherent  in  the  relationship  between  acute  exposure  to  ambient  PM2.5  and  the  risk  for  respiratory  disease  hospitalization  in  Kuwait,  a  region  that  is  understudied  and  has  very  high  PM2.5  concentration  levels,  in  an  effort  to  encourage  actions  to  reduce  exposure  and  minimize  potential  harm.
■590    ▼aSchool  code:  0084.
■650  4▼aEnvironmental  health.
■650  4▼aEpidemiology.
■653    ▼aAir  quality
■653    ▼aCausal  inference
■653    ▼aDifferential  toxicity
■653    ▼aEffect  modification
■653    ▼aForecasting
■653    ▼aCOVID-19
■690    ▼a0470
■690    ▼a0766
■71020▼aHarvard  University▼bPopulation  Health  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932199▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0028639 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치