본문

서브메뉴

Activity Allocation in an Under-Resourced World: Toward Improving Engagement With Public Health Programs via Restless Bandits- [electronic resource]
Activity Allocation in an Under-Resourced World: Toward Improving Engagement With Public Health Programs via Restless Bandits- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933120
International Standard Book Number  
9798380849951
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Killian, Jackson Albert.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(268 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
General Note  
Advisor: Tambe, Milind.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Artificial intelligence (AI) tools are being developed widely within society to improve decision-making, especially in resource-constrained settings like public health. However, developing effective AI tools for public health is complicated by scale, the time-varying and intervention-dependent nature of individuals' behavior, and scarcity - of intervention resources, historical data, and real-time observations. Many of these challenges are unaddressed in literature and can lead to poor outcomes if ignored in real-world AI support systems for public health. For example, previous works have modeled the problem of delivering interventions to improve engagement with health programs as a restless bandit, a widely-studied framework in which a set of stochastic arms are controlled by a planner with a limited intervention budget. However, these works do not account for the uncertainty that results from estimating the dynamics of stochastic arms from noisy observations and historical data. To address this, I introduce the first methods for computing uncertainty-robust restless bandit policies, across a range of assumptions on prior information and observability. I achieve this by designing novel approaches to efficiently search large policy and uncertainty spaces, e.g., a new multi-agent deep reinforcement learning paradigm in which a centralized budget-network communicates with per-arm policy-networks to learn globally optimal policies in an environment controlled by a regret-maximizing adversary-network. In union with this work, I advance art within the more computationally intensive generalization of restless bandits that finds policies which balance many types of interventions with unique costs and effects, e.g., a phone call vs. in-person visit; my works identify and exploit functional structures to design new algorithms that scale. This dissertation tackles several such challenges driven by identifying the key missing capabilities of interdisciplinary collaborators, especially tuberculosis healthcare workers and workers within a maternal health non-profit in India.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Public health.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Markov Decision Process
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Restless bandits
Index Term-Uncontrolled  
Uncertainty
Added Entry-Corporate Name  
Harvard University Engineering and Applied Sciences - Computer Science
Host Item Entry  
Dissertations Abstracts International. 85-05B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642670

MARC

 008240221s2023        ulk                      00        kor
■001000016933120
■00520240214101205
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380849951
■035    ▼a(MiAaPQ)AAI30525099
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aKillian,  Jackson  Albert.▼0(orcid)0000-0001-8555-1327
■24510▼aActivity  Allocation  in  an  Under-Resourced  World:  Toward  Improving  Engagement  With  Public  Health  Programs  via  Restless  Bandits▼h[electronic  resource]
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(268  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-05,  Section:  B.
■500    ▼aAdvisor:  Tambe,  Milind.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aArtificial  intelligence  (AI)  tools  are  being  developed  widely  within  society  to  improve  decision-making,  especially  in  resource-constrained  settings  like  public  health.  However,  developing  effective  AI  tools  for  public  health  is  complicated  by  scale,  the  time-varying  and  intervention-dependent  nature  of  individuals'  behavior,  and  scarcity  -  of  intervention  resources,  historical  data,  and  real-time  observations.  Many  of  these  challenges  are  unaddressed  in  literature  and  can  lead  to  poor  outcomes  if  ignored  in  real-world  AI  support  systems  for  public  health.  For  example,  previous  works  have  modeled  the  problem  of  delivering  interventions  to  improve  engagement  with  health  programs  as  a  restless  bandit,  a  widely-studied  framework  in  which  a  set  of  stochastic  arms  are  controlled  by  a  planner  with  a  limited  intervention  budget.  However,  these  works  do  not  account  for  the  uncertainty  that  results  from  estimating  the  dynamics  of  stochastic  arms  from  noisy  observations  and  historical  data.  To  address  this,  I  introduce  the  first  methods  for  computing  uncertainty-robust  restless  bandit  policies,  across  a  range  of  assumptions  on  prior  information  and  observability.  I  achieve  this  by  designing  novel  approaches  to  efficiently  search  large  policy  and  uncertainty  spaces,  e.g.,  a  new  multi-agent  deep  reinforcement  learning  paradigm  in  which  a  centralized  budget-network  communicates  with  per-arm  policy-networks  to  learn  globally  optimal  policies  in  an  environment  controlled  by  a  regret-maximizing  adversary-network.  In  union  with  this  work,  I  advance  art  within  the  more  computationally  intensive  generalization  of  restless  bandits  that  finds  policies  which  balance  many  types  of  interventions  with  unique  costs  and  effects,  e.g.,  a  phone  call  vs.  in-person  visit;  my  works  identify  and  exploit  functional  structures  to  design  new  algorithms  that  scale.  This  dissertation  tackles  several  such  challenges  driven  by  identifying  the  key  missing  capabilities  of  interdisciplinary  collaborators,  especially  tuberculosis  healthcare  workers  and  workers  within  a  maternal  health  non-profit  in  India.
■590    ▼aSchool  code:  0084.
■650  4▼aComputer  science.
■650  4▼aPublic  health.
■650  4▼aBioinformatics.
■653    ▼aMachine  learning
■653    ▼aMarkov  Decision  Process
■653    ▼aOptimization
■653    ▼aRestless  bandits
■653    ▼aUncertainty
■690    ▼a0984
■690    ▼a0800
■690    ▼a0573
■690    ▼a0715
■71020▼aHarvard  University▼bEngineering  and  Applied  Sciences  -  Computer  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-05B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933120▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0028587 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치