본문

서브메뉴

Unraveling Quantum Gravity Through the Gravitational Path Integral: Geometries, Entropies, and Algebras- [electronic resource]
Unraveling Quantum Gravity Through the Gravitational Path Integral: Geometries, Entropies, and Algebras- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933096
International Standard Book Number  
9798380616003
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Wang, Zhencheng.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Santa Barbara., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(516 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Marolf, Donald.
Dissertation Note  
Thesis (Ph.D.)--University of California, Santa Barbara, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The gravitational path integral has long served as a crucial tool in deciphering mysteries within quantum gravity. In recent years, studies of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence have offered many valuable insights into comprehending those mysteries, and many fruitful results have been yielded from utilizing the gravitational path integral within the framework of AdS/CFT.This dissertation is devoted to studying certain aspects of the gravitational path integral, discussing its relation with gravitational entropies, spacetime geometries, and its algebraic aspects. We explore contexts from Euclidean to Lorentz signature, from holographic theories to general theories, with a goal of understanding quantum gravity in the real world.In Part I, we discuss the fixed-(HRT)-area states in the gravitational path integral. The fixed-area states are holographic states where the area of the Hubeny-Rangamani-Takayanagi (HRT) surface, the holographic dual of entanglement entropy for a region in the boundary CFT, is constrained to a small window when prepared by the gravitational path integral. The study of those fixed-area states helps understand quantum gravity beyond the leading semiclassical order. We first show that by decomposing a general holographic state into fixed-area states, an important subleading correction appears to the entanglement entropy near phase transitions. Then we explore the intrinsic spacetime geometries of fixed-area states under Lorentz-signature time evolution.In Part II, we study saddle-point geometries of the real-time gravitational path integral, in the context of computing holographic R´enyi entropies. Unlike their Euclidean counterparts, these real-time saddles necessarily have complex metrics, giving an example where the saddle point is off the original contour of integration. We first present the formalism of this setup, illustrating the relevant variational problem, and features of the complex saddles. Then we demonstrate explicitly the structure of those saddles by showing examples in low dimensions by direct calculation. We also find that it is possible to deform the original integration contour to pass through saddles of this kind constructed in two-dimensional Jackiw-Teitelboim gravity. Finally, we show that the existence of these saddles results in a consequence which is necessary for unitarity to hold in quantum gravity.In Part III, we take a step towards explaining the origin of gravitational entropies, by utilizing the mathematical tool of von Neumann algebras. In particular, we give an explanation of the HRT formula purely from the bulk perspective, without making any reference to holography. This is done by constructing Hilbert spaces and von Neumann algebras from boundary conditions of the gravitational path integral with several natural axioms. The von Neumann algebras we find from this construction allows us to define a notion of entropy, which matches the HRT formula in the semiclassical limit. One of the axioms we assume which is crucial for the construction of von Neumann algebras - the trace inequality, is proven in the semiclassical limit, and it leads to novel positivity conjectures for the gravitational action.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Theoretical physics.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Quantum physics.
Index Term-Uncontrolled  
Quantum gravity
Index Term-Uncontrolled  
Gravitational path integral
Index Term-Uncontrolled  
Jackiw-Teitelboim gravity
Index Term-Uncontrolled  
Von Neumann algebras
Index Term-Uncontrolled  
Hilbert spaces
Added Entry-Corporate Name  
University of California, Santa Barbara Physics
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642658

MARC

 008240221s2023        ulk                      00        kor
■001000016933096
■00520240214101203
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380616003
■035    ▼a(MiAaPQ)AAI30524871
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aWang,  Zhencheng.
■24510▼aUnraveling  Quantum  Gravity  Through  the  Gravitational  Path  Integral:  Geometries,  Entropies,  and  Algebras▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Santa  Barbara.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(516  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  Marolf,  Donald.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Santa  Barbara,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  gravitational  path  integral  has  long  served  as  a  crucial  tool  in  deciphering  mysteries  within  quantum  gravity.  In  recent  years,  studies  of  the  Anti-de  Sitter/Conformal  Field  Theory  (AdS/CFT)  correspondence  have  offered  many  valuable  insights  into  comprehending  those  mysteries,  and  many  fruitful  results  have  been  yielded  from  utilizing  the  gravitational  path  integral  within  the  framework  of  AdS/CFT.This  dissertation  is  devoted  to  studying  certain  aspects  of  the  gravitational  path  integral,  discussing  its  relation  with  gravitational  entropies,  spacetime  geometries,  and  its  algebraic  aspects.  We  explore  contexts  from  Euclidean  to  Lorentz  signature,  from  holographic  theories  to  general  theories,  with  a  goal  of  understanding  quantum  gravity  in  the  real  world.In  Part  I,  we  discuss  the  fixed-(HRT)-area  states  in  the  gravitational  path  integral.  The  fixed-area  states  are  holographic  states  where  the  area  of  the  Hubeny-Rangamani-Takayanagi  (HRT)  surface,  the  holographic  dual  of  entanglement  entropy  for  a  region  in  the  boundary  CFT,  is  constrained  to  a  small  window  when  prepared  by  the  gravitational  path  integral.  The  study  of  those  fixed-area  states  helps  understand  quantum  gravity  beyond  the  leading  semiclassical  order.  We  first  show  that  by  decomposing  a  general  holographic  state  into  fixed-area  states,  an  important  subleading  correction  appears  to  the  entanglement  entropy  near  phase  transitions.  Then  we  explore  the  intrinsic  spacetime  geometries  of  fixed-area  states  under  Lorentz-signature  time  evolution.In  Part  II,  we  study  saddle-point  geometries  of  the  real-time  gravitational  path  integral,  in  the  context  of  computing  holographic  R´enyi  entropies.  Unlike  their  Euclidean  counterparts,  these  real-time  saddles  necessarily  have  complex  metrics,  giving  an  example  where  the  saddle  point  is  off  the  original  contour  of  integration.  We  first  present  the  formalism  of  this  setup,  illustrating  the  relevant  variational  problem,  and  features  of  the  complex  saddles.  Then  we  demonstrate  explicitly  the  structure  of  those  saddles  by  showing  examples  in  low  dimensions  by  direct  calculation.  We  also  find  that  it  is  possible  to  deform  the  original  integration  contour  to  pass  through  saddles  of  this  kind  constructed  in  two-dimensional  Jackiw-Teitelboim  gravity.  Finally,  we  show  that  the  existence  of  these  saddles  results  in  a  consequence  which  is  necessary  for  unitarity  to  hold  in  quantum  gravity.In  Part  III,  we  take  a  step  towards  explaining  the  origin  of  gravitational  entropies,  by  utilizing  the  mathematical  tool  of  von  Neumann  algebras.  In  particular,  we  give  an  explanation  of  the  HRT  formula  purely  from  the  bulk  perspective,  without  making  any  reference  to  holography.  This  is  done  by  constructing  Hilbert  spaces  and  von  Neumann  algebras  from  boundary  conditions  of  the  gravitational  path  integral  with  several  natural  axioms.  The  von  Neumann  algebras  we  find  from  this  construction  allows  us  to  define  a  notion  of  entropy,  which  matches  the  HRT  formula  in  the  semiclassical  limit.  One  of  the  axioms  we  assume  which  is  crucial  for  the  construction  of  von  Neumann  algebras  -  the  trace  inequality,  is  proven  in  the  semiclassical  limit,  and  it  leads  to  novel  positivity  conjectures  for  the  gravitational  action. 
■590    ▼aSchool  code:  0035.
■650  4▼aPhysics.
■650  4▼aTheoretical  physics.
■650  4▼aApplied  mathematics.
■650  4▼aQuantum  physics.
■653    ▼aQuantum  gravity
■653    ▼aGravitational  path  integral
■653    ▼aJackiw-Teitelboim  gravity
■653    ▼aVon  Neumann  algebras
■653    ▼aHilbert  spaces
■690    ▼a0605
■690    ▼a0753
■690    ▼a0599
■690    ▼a0364
■71020▼aUniversity  of  California,  Santa  Barbara▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0035
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933096▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0028575 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치