본문

서브메뉴

Highly Reliable Communication and Sensing for Battery-Free IoT- [electronic resource]
Highly Reliable Communication and Sensing for Battery-Free IoT- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932985
International Standard Book Number  
9798380417129
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Zhao, Renjie.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, San Diego., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(175 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Zhang, Xinyu.
Dissertation Note  
Thesis (Ph.D.)--University of California, San Diego, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The Internet of Things (IoT) has experienced remarkable growth in recent years, with the number of IoT devices reaching 11.3 billion by 2020, surpassing even the global population as well as the combined market of smartphones, tablets, and PCs. However, this growth has been slower than the previous predictions of trillions of deployed IoT devices within the past decade. One of the primary reasons for this slower growth is the challenges posed by existing battery-supported architecture, including high device and maintenance costs, as well as environmental concerns, all of which hinder scalability. To overcome these obstacles, there is a proposal for battery-free IoT devices that can harvest energy from ambient sources. However, The conventional active radios used in IoT devices consume tens to hundreds of milliwatts of power, making them unsuitable for energy harvesting, which typically provides less than 10 µW of power. In response, researchers have been exploring new radio architectures for ultra-low-power (ULP) communication and sensing.However, ULP communication and sensing techniques face reliability challenges that hinder their practical deployment. Two specific challenges are identified: Firstly, widely adopted backscatter communication systems are susceptible to double attenuation of the two-part channel, making them vulnerable to blockages and environmental changes. Secondly, ULP sensing systems typically have low bandwidth, making them susceptible to issues in indoor multipath-rich environments.To address the reliability problem, this dissertation proposes the following contributions: Firstly, it introduces a novel system architecture that enables micro-watt-level active transmission, thereby improving communication reliability. Additionally, the system adopts an asymmetric communication scheme to reuse commodity devices, enhancing practicality and efficiency. Secondly, the dissertation presents a long-range magnetic RFID system that utilizes magnetic signals instead of electromagnetic signals. This innovative approach helps reduce the impact of blockages and environmental factors, ensuring more reliable and consistent performance. Finally, the dissertation introduces a multi-antenna wideband UHF RFID localization system that leverages the frequency-agnostic property of backscatter to collect wide bandwidth RFID signals. This system achieves more accurate and dependable localization results, particularly in challenging multipath-rich indoor environments.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Computer engineering.
Index Term-Uncontrolled  
Global population
Index Term-Uncontrolled  
Hinder scalability
Index Term-Uncontrolled  
Ultra-low-power
Index Term-Uncontrolled  
Low bandwidth
Index Term-Uncontrolled  
Smartphones
Added Entry-Corporate Name  
University of California, San Diego Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642425

MARC

 008240221s2023        ulk                      00        kor
■001000016932985
■00520240214101149
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380417129
■035    ▼a(MiAaPQ)AAI30522990
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aZhao,  Renjie.
■24510▼aHighly  Reliable  Communication  and  Sensing  for  Battery-Free  IoT▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  San  Diego.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(175  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  Zhang,  Xinyu.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  San  Diego,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  Internet  of  Things  (IoT)  has  experienced  remarkable  growth  in  recent  years,  with  the  number  of  IoT  devices  reaching  11.3  billion  by  2020,  surpassing  even  the  global  population  as  well  as  the  combined  market  of  smartphones,  tablets,  and  PCs.  However,  this  growth  has  been  slower  than  the  previous  predictions  of  trillions  of  deployed  IoT  devices  within  the  past  decade.  One  of  the  primary  reasons  for  this  slower  growth  is  the  challenges  posed  by  existing  battery-supported  architecture,  including  high  device  and  maintenance  costs,  as  well  as  environmental  concerns,  all  of  which  hinder  scalability.  To  overcome  these  obstacles,  there  is  a  proposal  for  battery-free  IoT  devices  that  can  harvest  energy  from  ambient  sources.  However,  The  conventional  active  radios  used  in  IoT  devices  consume  tens  to  hundreds  of  milliwatts  of  power,  making  them  unsuitable  for  energy  harvesting,  which  typically  provides  less  than  10  µW  of  power.  In  response,  researchers  have  been  exploring  new  radio  architectures  for  ultra-low-power  (ULP)  communication  and  sensing.However,  ULP  communication  and  sensing  techniques  face  reliability  challenges  that  hinder  their  practical  deployment.  Two  specific  challenges  are  identified:  Firstly,  widely  adopted  backscatter  communication  systems  are  susceptible  to  double  attenuation  of  the  two-part  channel,  making  them  vulnerable  to  blockages  and  environmental  changes.  Secondly,  ULP  sensing  systems  typically  have  low  bandwidth,  making  them  susceptible  to  issues  in  indoor  multipath-rich  environments.To  address  the  reliability  problem,  this  dissertation  proposes  the  following  contributions:  Firstly,  it  introduces  a  novel  system  architecture  that  enables  micro-watt-level  active  transmission,  thereby  improving  communication  reliability.  Additionally,  the  system  adopts  an  asymmetric  communication  scheme  to  reuse  commodity  devices,  enhancing  practicality  and  efficiency.  Secondly,  the  dissertation  presents  a  long-range  magnetic  RFID  system  that  utilizes  magnetic  signals  instead  of  electromagnetic  signals.  This  innovative  approach  helps  reduce  the  impact  of  blockages  and  environmental  factors,  ensuring  more  reliable  and  consistent  performance.  Finally,  the  dissertation  introduces  a  multi-antenna  wideband  UHF  RFID  localization  system  that  leverages  the  frequency-agnostic  property  of  backscatter  to  collect  wide  bandwidth  RFID  signals.  This  system  achieves  more  accurate  and  dependable  localization  results,  particularly  in  challenging  multipath-rich  indoor  environments.
■590    ▼aSchool  code:  0033.
■650  4▼aElectrical  engineering.
■650  4▼aComputer  engineering.
■653    ▼aGlobal  population
■653    ▼aHinder  scalability
■653    ▼aUltra-low-power
■653    ▼aLow  bandwidth
■653    ▼aSmartphones
■690    ▼a0544
■690    ▼a0464
■71020▼aUniversity  of  California,  San  Diego▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0033
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932985▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0028339 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치