본문

서브메뉴

Inference of Representations Through Structure: Revisiting Marr's Tri-Level Hypothesis of Neuroscience- [electronic resource]
Inference of Representations Through Structure: Revisiting Marr's Tri-Level Hypothesis of Neuroscience- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016931422
International Standard Book Number  
9798379751463
Dewey Decimal Classification Number  
616
Main Entry-Personal Name  
Di Tullio, Ronald W.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Pennsylvania., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(157 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Balasubramanian, Vijay;Cohen, Yale.
Dissertation Note  
Thesis (Ph.D.)--University of Pennsylvania, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Marr's tri-level hypothesis marked a turning point for systems neuroscience and has consistently influenced thinking in the field since its proposal nearly fifty years ago by David Marr and Tomaso Poggio. Its assertion that any system could be understood on three distinct but equally valid levels - implementation, representational/algorithmic, and computational - provided a unifying framework into which researchers could organize their work and the work of their peers. Neuroscience appears to again be at a turning point. Recent technological, computational, and theoretical developments offer the possibility of making significant progress in understanding neural systems on the representational /algorithmic level. Thus, once again, a unifying framework is needed for researchers to organize this new wave of work.In this thesis, I humbly take a bold stab at proposing such a unifying framework. This framework, Representational Inference through Structure, or Inference through Structure for brevity, argues that researchers make inferences about the representations and algorithms used by neural systems by leveraging three different types of observed structure. Specifically: structure in the stimuli/inputs, structure in the neural activity itself, and/or structure in the task. In the introductory chapter I argue that this framework allows us to view approaches sometimes seen as disparate or even antagonistic as instead leveraging a different type of structure and thus part of a unified effort to understand the brain. In the next chapters I then take my own work across three different domains of systems neuroscience as examples of leveraging the different types of structure. In the final chapter I conclude by demonstrating the broader utility of the framework and discussing the potential next steps in the field of systems neuroscience.
Subject Added Entry-Topical Term  
Neurosciences.
Subject Added Entry-Topical Term  
Mathematics.
Index Term-Uncontrolled  
Audition
Index Term-Uncontrolled  
Cognition
Index Term-Uncontrolled  
Computational neuroscience
Index Term-Uncontrolled  
Spatial navigation
Index Term-Uncontrolled  
Theoretical neuroscience
Added Entry-Corporate Name  
University of Pennsylvania Neuroscience
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642393

MARC

 008240221s2023        ulk                      00        kor
■001000016931422
■00520240214100019
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379751463
■035    ▼a(MiAaPQ)AAI30311467
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a616
■1001  ▼aDi  Tullio,  Ronald  W.
■24510▼aInference  of  Representations  Through  Structure:  Revisiting  Marr's  Tri-Level  Hypothesis  of  Neuroscience▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Pennsylvania.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(157  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Balasubramanian,  Vijay;Cohen,  Yale.
■5021  ▼aThesis  (Ph.D.)--University  of  Pennsylvania,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aMarr's  tri-level  hypothesis  marked  a  turning  point  for  systems  neuroscience  and  has  consistently  influenced  thinking  in  the  field  since  its  proposal  nearly  fifty  years  ago  by  David  Marr  and  Tomaso  Poggio.  Its  assertion  that  any  system  could  be  understood  on  three  distinct  but  equally  valid  levels  -  implementation,  representational/algorithmic,  and  computational  -  provided  a  unifying  framework  into  which  researchers  could  organize  their  work  and  the  work  of  their  peers.  Neuroscience  appears  to  again  be  at  a  turning  point.  Recent  technological,  computational,  and  theoretical  developments  offer  the  possibility  of  making  significant  progress  in  understanding  neural  systems  on  the  representational  /algorithmic  level.  Thus,  once  again,  a  unifying  framework  is  needed  for  researchers  to  organize  this  new  wave  of  work.In  this  thesis,  I  humbly  take  a  bold  stab  at  proposing  such  a  unifying  framework.  This  framework,  Representational  Inference  through  Structure,  or  Inference  through  Structure  for  brevity,  argues  that  researchers  make  inferences  about  the  representations  and  algorithms  used  by  neural  systems  by  leveraging  three  different  types  of  observed  structure.  Specifically:  structure  in  the  stimuli/inputs,  structure  in  the  neural  activity  itself,  and/or  structure  in  the  task.  In  the  introductory  chapter  I  argue  that  this  framework  allows  us  to  view  approaches  sometimes  seen  as  disparate  or  even  antagonistic  as  instead  leveraging  a  different  type  of  structure  and  thus  part  of  a  unified  effort  to  understand  the  brain.  In  the  next  chapters  I  then  take  my  own  work  across  three  different  domains  of  systems  neuroscience  as  examples  of  leveraging  the  different  types  of  structure.  In  the  final  chapter  I  conclude  by  demonstrating  the  broader  utility  of  the  framework  and  discussing  the  potential  next  steps  in  the  field  of  systems  neuroscience.
■590    ▼aSchool  code:  0175.
■650  4▼aNeurosciences.
■650  4▼aMathematics.
■653    ▼aAudition
■653    ▼aCognition
■653    ▼aComputational  neuroscience
■653    ▼aSpatial  navigation
■653    ▼aTheoretical  neuroscience
■690    ▼a0317
■690    ▼a0405
■71020▼aUniversity  of  Pennsylvania▼bNeuroscience.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0175
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931422▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0028307 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치