본문

서브메뉴

Weak Lensing Cosmology and Its Astrophysical Systematics Through Machine Learning- [electronic resource]
Weak Lensing Cosmology and Its Astrophysical Systematics Through Machine Learning- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933148
International Standard Book Number  
9798379780456
Dewey Decimal Classification Number  
520
Main Entry-Personal Name  
Lu, Tianhuan.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(177 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Haiman, Zoltan.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약In this dissertation, we investigate weak lensing cosmology and its astrophysical systematics by employing machine learning techniques. We focus on addressing the discrepancy between two previous weak lensing analyses on CFHTLenS data, understanding the impact of baryons on weak lensing statistics, and leveraging convolutional neural networks (CNNs) for constraining cosmological and baryonic parameters.First, we perform a side-by-side comparison of the two-point correlation function and power spectrum analyses on CFHTLenS data, identifying excess power in the data on small scales and discussing potential origins of this excess power. Next, we study the effect of baryons on weak lensing statistics using the baryonic correction model, demonstrating that marginalizing over baryonic parameters will degrade constraints in the Ωm-\uD835\uDF0E8 parameter space, but the degradation can be mitigated by combining the lensing power spectrum and peak counts.Second, we explore the use of CNNs to constrain cosmological and baryonic parameters. We find that CNNs can achieve tighter constraints in Ωm-\uD835\uDF0E8 space than traditional methods on simulation data. We then apply our pipeline to the HSC first-year weak lensing shear catalog. We find that statistical uncertainties of the parameters by the CNNs are smaller than those from the power spectrum and peak counts, showing that CNNs can extract additional cosmological information from weak lensing data even in a real experiment.
Subject Added Entry-Topical Term  
Astronomy.
Subject Added Entry-Topical Term  
Astrophysics.
Index Term-Uncontrolled  
Cosmology
Index Term-Uncontrolled  
Convolutional neural networks
Index Term-Uncontrolled  
Baryonic parameters
Index Term-Uncontrolled  
Power spectrum
Index Term-Uncontrolled  
Machine learning
Added Entry-Corporate Name  
Columbia University Astronomy
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642228

MARC

 008240221s2023        ulk                      00        kor
■001000016933148
■00520240214101209
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379780456
■035    ▼a(MiAaPQ)AAI30525365
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a520
■1001  ▼aLu,  Tianhuan.
■24510▼aWeak  Lensing  Cosmology  and  Its  Astrophysical  Systematics  Through  Machine  Learning▼h[electronic  resource]
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(177  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Haiman,  Zoltan.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aIn  this  dissertation,  we  investigate  weak  lensing  cosmology  and  its  astrophysical  systematics  by  employing  machine  learning  techniques.  We  focus  on  addressing  the  discrepancy  between  two  previous  weak  lensing  analyses  on  CFHTLenS  data,  understanding  the  impact  of  baryons  on  weak  lensing  statistics,  and  leveraging  convolutional  neural  networks  (CNNs)  for  constraining  cosmological  and  baryonic  parameters.First,  we  perform  a  side-by-side  comparison  of  the  two-point  correlation  function  and  power  spectrum  analyses  on  CFHTLenS  data,  identifying  excess  power  in  the  data  on  small  scales  and  discussing  potential  origins  of  this  excess  power.  Next,  we  study  the  effect  of  baryons  on  weak  lensing  statistics  using  the  baryonic  correction  model,  demonstrating  that  marginalizing  over  baryonic  parameters  will  degrade  constraints  in  the  Ωm-\uD835\uDF0E8  parameter  space,  but  the  degradation  can  be  mitigated  by  combining  the  lensing  power  spectrum  and  peak  counts.Second,  we  explore  the  use  of  CNNs  to  constrain  cosmological  and  baryonic  parameters.  We  find  that  CNNs  can  achieve  tighter  constraints  in  Ωm-\uD835\uDF0E8  space  than  traditional  methods  on  simulation  data.  We  then  apply  our  pipeline  to  the  HSC  first-year  weak  lensing  shear  catalog.  We  find  that  statistical  uncertainties  of  the  parameters  by  the  CNNs  are  smaller  than  those  from  the  power  spectrum  and  peak  counts,  showing  that  CNNs  can  extract  additional  cosmological  information  from  weak  lensing  data  even  in  a  real  experiment.
■590    ▼aSchool  code:  0054.
■650  4▼aAstronomy.
■650  4▼aAstrophysics.
■653    ▼aCosmology
■653    ▼aConvolutional  neural  networks
■653    ▼aBaryonic  parameters
■653    ▼aPower  spectrum
■653    ▼aMachine  learning
■690    ▼a0606
■690    ▼a0596
■71020▼aColumbia  University▼bAstronomy.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933148▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0028142 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치