본문

서브메뉴

Autonomous Methods Enable Discovery of Metastable Materials- [electronic resource]
Autonomous Methods Enable Discovery of Metastable Materials- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016931401
International Standard Book Number  
9798379710231
Dewey Decimal Classification Number  
620.11
Main Entry-Personal Name  
Sutherland, Duncan Ross.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(157 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: van Dover, Bruce.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The study of complex oxides through combinatorial efforts would require a prohibitive amount of material resources and time if experiments were conducted using bulk techniques and at macroscopic length scales. The work in this thesis details the application of leading-edge materials processing in conjunction with advanced micron-scale synchrotron characterization to enable high-throughput studies in the search for metastable materials.Lateral-gradient laser spike annealing is used to rapidly heat and quench millimeter scale samples of thin films of metal oxides. This technique generates a multitude of locations with specific processing histories in a single experiment that are assayed by optical microscopy, micron-scale reflectance spectroscopy, and micron-scale x-ray diffraction. These analytical techniques offer a hierarchy of information on the transformed thin film with a corresponding increase in complexity and accessibility (cost). It is shown how the spatially resolved techniques can be used to construct processing phase maps denoting important phase fields and transformation boundaries as a function of the processing time and temperature, analogous to the canonical time-temperature-transformation diagrams.Two optical methods are demonstrated as quantifiably relevant proxies for identifying crystallographic transformations as validated by x-ray diffraction. This is demonstrated by cross correlating and comparing observed transformations identified using the three analytical techniques as applied to amorphous thin films of Ga2O3 and a pseudo-binary composition spread of amorphous La2O3-Mn3O4, in both cases spanning a range of processing times and temperatures.Exploration of these material spaces is improved upon by incorporating artificial intelligence and machine learning methods with the development of SARA, the Scientific Autonomous Reasoning Agent. The first iteration of SARA aims to autonomously and rapidly construct these diagrams from readily available optical methods. This is achieved through the use of experimentally informed and intelligently designed Gaussian process regression models. The performance of this learning method is validated by comparison with an exhaustively explored phase map of the Bi2O3 system. Finally, a systematic study of the laser spike annealed transformations in amorphous SnO2 and amorphous Sn2O3 is conducted. Each film comprises regions capped with and without an Al2O3 oxygen passivation layer in an attempt to disentangle the competing non-equilibrium effects of laser spike annealing under atmospheric conditions and initial oxygen composition. Rapid phase identification and quantification algorithms applied to the spatially resolved x-ray diffraction data are validated in preparation for the next generation of autonomous experimentation, in which exploration and learning are derived from the underlying crystallographic information. There are transformations in both of these chemical systems that reveal the ability to produce metastable materials even in extensively explored and highly engineered systems. Notable are the retention of the litharge-type SnO compound, even when processing temperature exceeds the known decomposition temperature of the amorphous Sn2O3 film, and the observation of a previously unreported nucleating precursor phase from the amorphous SnO2 film.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Physics.
Index Term-Uncontrolled  
Autonomous experimentation
Index Term-Uncontrolled  
Laser spike annealing
Index Term-Uncontrolled  
Metastable
Index Term-Uncontrolled  
Thin-films
Index Term-Uncontrolled  
Material resources
Added Entry-Corporate Name  
Cornell University Materials Science and Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642173

MARC

 008240221s2023        ulk                      00        kor
■001000016931401
■00520240214100015
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379710231
■035    ▼a(MiAaPQ)AAI30311058
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.11
■1001  ▼aSutherland,  Duncan  Ross.▼0(orcid)0000-0002-8171-5053
■24510▼aAutonomous  Methods  Enable  Discovery  of  Metastable  Materials▼h[electronic  resource]
■260    ▼a[S.l.]▼bCornell  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(157  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  van  Dover,  Bruce.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  study  of  complex  oxides  through  combinatorial  efforts  would  require  a  prohibitive  amount  of  material  resources  and  time  if  experiments  were  conducted  using  bulk  techniques  and  at  macroscopic  length  scales.  The  work  in  this  thesis  details  the  application  of  leading-edge  materials  processing  in  conjunction  with  advanced  micron-scale  synchrotron  characterization  to  enable  high-throughput  studies  in  the  search  for  metastable  materials.Lateral-gradient  laser  spike  annealing  is  used  to  rapidly  heat  and  quench  millimeter  scale  samples  of  thin  films  of  metal  oxides.  This  technique  generates  a  multitude  of  locations  with  specific  processing  histories  in  a  single  experiment  that  are  assayed  by  optical  microscopy,  micron-scale  reflectance  spectroscopy,  and  micron-scale  x-ray  diffraction.  These  analytical  techniques  offer  a  hierarchy  of  information  on  the  transformed  thin  film  with  a  corresponding  increase  in  complexity  and  accessibility  (cost).  It  is  shown  how  the  spatially  resolved  techniques  can  be  used  to  construct  processing  phase  maps  denoting  important  phase  fields  and  transformation  boundaries  as  a  function  of  the  processing  time  and  temperature,  analogous  to  the  canonical  time-temperature-transformation  diagrams.Two  optical  methods  are  demonstrated  as  quantifiably  relevant  proxies  for  identifying  crystallographic  transformations  as  validated  by  x-ray  diffraction.  This  is  demonstrated  by  cross  correlating  and  comparing  observed  transformations  identified  using  the  three  analytical  techniques  as  applied  to  amorphous  thin  films  of  Ga2O3  and  a  pseudo-binary  composition  spread  of  amorphous  La2O3-Mn3O4,  in  both  cases  spanning  a  range  of  processing  times  and  temperatures.Exploration  of  these  material  spaces  is  improved  upon  by  incorporating  artificial  intelligence  and  machine  learning  methods  with  the  development  of  SARA,  the  Scientific  Autonomous  Reasoning  Agent.  The  first  iteration  of  SARA  aims  to  autonomously  and  rapidly  construct  these  diagrams  from  readily  available  optical  methods.  This  is  achieved  through  the  use  of  experimentally  informed  and  intelligently  designed  Gaussian  process  regression  models.  The  performance  of  this  learning  method  is  validated  by  comparison  with  an  exhaustively  explored  phase  map  of  the  Bi2O3  system. Finally,  a  systematic  study  of  the  laser  spike  annealed  transformations  in  amorphous  SnO2  and  amorphous  Sn2O3  is  conducted.  Each  film  comprises  regions  capped  with  and  without  an  Al2O3  oxygen  passivation  layer  in  an  attempt  to  disentangle  the  competing  non-equilibrium  effects  of  laser  spike  annealing  under  atmospheric  conditions  and  initial  oxygen  composition.  Rapid  phase  identification  and  quantification  algorithms  applied  to  the  spatially  resolved  x-ray  diffraction  data  are  validated  in  preparation  for  the  next  generation  of  autonomous  experimentation,  in  which  exploration  and  learning  are  derived  from  the  underlying  crystallographic  information.  There  are  transformations  in  both  of  these  chemical  systems  that  reveal  the  ability  to  produce  metastable  materials  even  in  extensively  explored  and  highly  engineered  systems.  Notable  are  the  retention  of  the  litharge-type  SnO  compound,  even  when  processing  temperature  exceeds  the  known  decomposition  temperature  of  the  amorphous  Sn2O3  film,  and  the  observation  of  a  previously  unreported  nucleating  precursor  phase  from  the  amorphous  SnO2  film.
■590    ▼aSchool  code:  0058.
■650  4▼aMaterials  science.
■650  4▼aChemistry.
■650  4▼aPhysics.
■653    ▼aAutonomous  experimentation
■653    ▼aLaser  spike  annealing
■653    ▼aMetastable
■653    ▼aThin-films
■653    ▼aMaterial  resources
■690    ▼a0794
■690    ▼a0605
■690    ▼a0485
■71020▼aCornell  University▼bMaterials  Science  and  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931401▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0028091 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치