본문

서브메뉴

Integrating Declarative Static Analysis With Neural Models of Code- [electronic resource]
Integrating Declarative Static Analysis With Neural Models of Code- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016931383
International Standard Book Number  
9798379754686
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Pashakhanloo, Pardis.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Pennsylvania., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(132 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: A.
General Note  
Advisor: Naik, Mayur.
Dissertation Note  
Thesis (Ph.D.)--University of Pennsylvania, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약In recent years, deep learning techniques have made remarkable strides in solving a variety of program understanding challenges. The successful application of these techniques to a given task depends heavily on how the source code is represented by the deep neural network. Designing a suitable representation for a newly created task involves many challenges. It is necessary, among other things, to understand the implementation of other functions or modules in a project that may be spread out across a large lexical area. In addition, determining which components and features to include in order to enrich the representation is a challenge. In this dissertation, the challenges of code representation are addressed by proposing to systematically represent programs as relational databases, introducing a graph walk mechanism to remove unrelated context from large relational graphs, and describing a language for specifying tasks and program analysis queries to tailor neural code-reasoning models. A detailed analysis shows the presented techniques are superior to state-of-the-art in a variety of aspects, such as performance, robustness, and interpretability.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Information science.
Index Term-Uncontrolled  
Bug finding
Index Term-Uncontrolled  
Deep learning
Index Term-Uncontrolled  
Program analysis
Index Term-Uncontrolled  
Software security
Added Entry-Corporate Name  
University of Pennsylvania Computer and Information Science
Host Item Entry  
Dissertations Abstracts International. 84-12A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642119

MARC

 008240221s2023        ulk                      00        kor
■001000016931383
■00520240214100012
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379754686
■035    ▼a(MiAaPQ)AAI30310556
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aPashakhanloo,  Pardis.
■24510▼aIntegrating  Declarative  Static  Analysis  With  Neural  Models  of  Code▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Pennsylvania.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(132  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  A.
■500    ▼aAdvisor:  Naik,  Mayur.
■5021  ▼aThesis  (Ph.D.)--University  of  Pennsylvania,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aIn  recent  years,  deep  learning  techniques  have  made  remarkable  strides  in  solving  a  variety  of  program  understanding  challenges.  The  successful  application  of  these  techniques  to  a  given  task  depends  heavily  on  how  the  source  code  is  represented  by  the  deep  neural  network.  Designing  a  suitable  representation  for  a  newly  created  task  involves  many  challenges.  It  is  necessary,  among  other  things,  to  understand  the  implementation  of  other  functions  or  modules  in  a  project  that  may  be  spread  out  across  a  large  lexical  area.  In  addition,  determining  which  components  and  features  to  include  in  order  to  enrich  the  representation  is  a  challenge.  In  this  dissertation,  the  challenges  of  code  representation  are  addressed  by  proposing  to  systematically  represent  programs  as  relational  databases,  introducing  a  graph  walk  mechanism  to  remove  unrelated  context  from  large  relational  graphs,  and  describing  a  language  for  specifying  tasks  and  program  analysis  queries  to  tailor  neural  code-reasoning  models.  A  detailed  analysis  shows  the  presented  techniques  are  superior  to  state-of-the-art  in  a  variety  of  aspects,  such  as  performance,  robustness,  and  interpretability.
■590    ▼aSchool  code:  0175.
■650  4▼aComputer  science.
■650  4▼aInformation  science.
■653    ▼aBug  finding
■653    ▼aDeep  learning
■653    ▼aProgram  analysis
■653    ▼aSoftware  security
■690    ▼a0984
■690    ▼a0800
■690    ▼a0723
■71020▼aUniversity  of  Pennsylvania▼bComputer  and  Information  Science.
■7730  ▼tDissertations  Abstracts  International▼g84-12A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0175
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931383▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0028021 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치