본문

서브메뉴

Dissolved Methane Management and Post-Treatment for Non-Potable Water Reuse of Staged Anaerobic Fluidized-Bed Membrane Bioreactor Effluent- [electronic resource]
Dissolved Methane Management and Post-Treatment for Non-Potable Water Reuse of Staged Anaerobic Fluidized-Bed Membrane Bioreactor Effluent- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934429
International Standard Book Number  
9798380272575
Dewey Decimal Classification Number  
628
Main Entry-Personal Name  
Galdi, Stephen M.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(116 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: A.
General Note  
Advisor: Criddle, Craig;Tarpeh, William;Luthy, Richard.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Mainstream anaerobic wastewater treatment with the staged anaerobic fluidized bed membrane bioreactor (SAF-MBR) shows promise to transform secondary wastewater treatment into an energy-positive, decentralizable process. However, prior to full scale application, more information is required to address the issues of dissolved methane recovery, compliance with prevailing regulations, and compatibility with polishing unit processes. Dissolved methane in the SAF-MBR effluent comprises between 10-50% of methane generated from secondary treatment, and its recovery is necessary for energy positive operation and prevention of fugitive methane emissions a potent greenhouse gas. Field experiments were conducted at a demonstration-scale SAF-MBR process to evaluate dissolved methane recovery and effluent polishing to reduce trace organic contaminants. Pilot air stripping experiments with regular disinfection demonstrated 98% removal of dissolved methane, with 90% methane recoverable for combustion when blended with primary and secondary biogas streams. Direct energy costs make up less than 1% of the additional energy recoverable from the air stripping process, making the process a robust and efficient option for dissolved methane recovery.In addition to dissolved methane recovery by air stripping, post-treatment consisting of a roughing aerobic filter, tertiary filtration with regenerated activated carbon, and ultraviolet disinfection were shown to manage residual organic matter, pathogens, and trace organics observed in SAF-MBR effluent in compliance with discharge or non-potable reuse regulations. The regenerated activated carbon filtration showed at least two log removal of eight hydrophilic trace organic compounds (TrOCs) spiked at 10-20 µg/L: 1H-benzotriazole, caffeine, carbamazepine, diuron, fipronil, gemfibrozil, imidacloprid, and sulfamethoxazole. With the addition of a nitrogen removal or recovery process, the SAF-MBR effluent could be demonstrated effective and safe for decentralized irrigation applications. The use of regenerated activated carbon and biochar media in tertiary filtration were assessed for additional removal of select TrOCs relevant for indirect potable reuse via groundwater recharge. Using diffusion-limited advection dispersion modeling from pilot tests, TrOC removal and sorption parameters can be onsistently fit to stable wastewater effluent conditions. For TrOCs compatible with sorption removal, multiple log removals were observed over 1500 empty bed volumes of operation with regenerated activated carbon. Under more challenging conditions with 5 wt % activated carbon and 6 wt % biochar, severe filter clogging, and increased TrOC mobility was observed in SAF-MBR effluent without aerobic polishing. Decreases in performance were manifest by a substantial increase in compound specific tortuosity factors, implying kinetic limitations to sorption rather than a large decrease in sorption capacity from high organic carbon loading.These results from testbed studies in field conditions show the feasibility for nonpotable water reuse of SAF-MBR effluent following air stripping for methane recovery, aerobic polishing, regenerated activated carbon filtration, and UV disinfection. Future improvements to SAF-MBR retention and degradation of ultra-fine organic matter are anticipated to further improve the performance of regenerated activated carbon filtration. This is concluded by modeled parameters showing reduced kinetic inhibition of TrOCs loading onto carbon sorbents during operation at lower relative dissolved organic carbon. Increased flow rates may also improve aerobic filter performance, if a trickling filter is selected, as the pilot unit had non-ideal flow distribution over the packing media. Increased aerobic degradation in the effluent prior to black carbon filtration would remove more of the degradable subset of TrOCs, and more importantly further reduce the dissolved organic carbon loading on the sorption media. With these improvements and a nutrient management strategy, the SAF-MBR could be deployed to deliver irrigation water with lower energy and carbon footprints than current alternatives.
Subject Added Entry-Topical Term  
Air flow.
Subject Added Entry-Topical Term  
Environmental science.
Subject Added Entry-Topical Term  
Water treatment.
Subject Added Entry-Topical Term  
Emissions.
Subject Added Entry-Topical Term  
Electricity distribution.
Subject Added Entry-Topical Term  
Chemical oxygen demand.
Subject Added Entry-Topical Term  
Drinking water.
Subject Added Entry-Topical Term  
Biomass.
Subject Added Entry-Topical Term  
Effluents.
Subject Added Entry-Topical Term  
Energy consumption.
Subject Added Entry-Topical Term  
Activated carbon.
Subject Added Entry-Topical Term  
Technology.
Subject Added Entry-Topical Term  
Climate change.
Subject Added Entry-Topical Term  
Membrane separation.
Subject Added Entry-Topical Term  
Sludge.
Subject Added Entry-Topical Term  
Recycling.
Subject Added Entry-Topical Term  
Electricity.
Subject Added Entry-Topical Term  
Biogas.
Subject Added Entry-Topical Term  
Sensors.
Subject Added Entry-Topical Term  
Alternative energy.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Biogeochemistry.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Civil engineering.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Environmental engineering.
Subject Added Entry-Topical Term  
Sustainability.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-03A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642074

MARC

 008240221s2022        ulk                      00        kor
■001000016934429
■00520240214101609
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380272575
■035    ▼a(MiAaPQ)AAI30593464
■035    ▼a(MiAaPQ)STANFORDrv297kg6406
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a628
■1001  ▼aGaldi,  Stephen  M.
■24510▼aDissolved  Methane  Management  and  Post-Treatment  for  Non-Potable  Water  Reuse  of  Staged  Anaerobic  Fluidized-Bed  Membrane  Bioreactor  Effluent▼h[electronic  resource]
■260    ▼a[S.l.]▼bStanford  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(116  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  A.
■500    ▼aAdvisor:  Criddle,  Craig;Tarpeh,  William;Luthy,  Richard.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aMainstream  anaerobic  wastewater  treatment  with  the  staged  anaerobic  fluidized  bed  membrane  bioreactor  (SAF-MBR)  shows  promise  to  transform  secondary  wastewater  treatment  into  an  energy-positive,  decentralizable  process.  However,  prior  to  full  scale  application,  more  information  is  required  to  address  the  issues  of  dissolved  methane  recovery,  compliance  with  prevailing  regulations,  and  compatibility  with  polishing  unit  processes.  Dissolved  methane  in  the  SAF-MBR  effluent  comprises  between  10-50%  of  methane  generated  from  secondary  treatment,  and  its  recovery  is  necessary  for  energy  positive  operation  and  prevention  of  fugitive  methane  emissions  a  potent  greenhouse  gas.  Field  experiments  were  conducted  at  a  demonstration-scale  SAF-MBR  process  to  evaluate  dissolved  methane  recovery  and  effluent  polishing  to  reduce  trace  organic  contaminants.  Pilot  air  stripping  experiments  with  regular  disinfection  demonstrated  98%  removal  of  dissolved  methane,  with  90%  methane  recoverable  for  combustion  when  blended  with  primary  and  secondary  biogas  streams.  Direct  energy  costs  make  up  less  than  1%  of  the  additional  energy  recoverable  from  the  air  stripping  process,  making  the  process  a  robust  and  efficient  option  for  dissolved  methane  recovery.In  addition  to  dissolved  methane  recovery  by  air  stripping,  post-treatment  consisting  of  a  roughing  aerobic  filter,  tertiary  filtration  with  regenerated  activated  carbon,  and  ultraviolet  disinfection  were  shown  to  manage  residual  organic  matter,  pathogens,  and  trace  organics  observed  in  SAF-MBR  effluent  in  compliance  with  discharge  or  non-potable  reuse  regulations.  The  regenerated  activated  carbon  filtration  showed  at  least  two  log  removal  of  eight  hydrophilic  trace  organic  compounds  (TrOCs)  spiked  at  10-20  µg/L:  1H-benzotriazole,  caffeine,  carbamazepine,  diuron,  fipronil,  gemfibrozil,  imidacloprid,  and  sulfamethoxazole.  With  the  addition  of  a  nitrogen  removal  or  recovery  process,  the  SAF-MBR  effluent  could  be  demonstrated  effective  and  safe  for  decentralized  irrigation  applications.  The  use  of  regenerated  activated  carbon  and  biochar  media  in  tertiary  filtration  were  assessed  for  additional  removal  of  select  TrOCs  relevant  for  indirect  potable  reuse  via  groundwater  recharge.  Using  diffusion-limited  advection  dispersion  modeling  from  pilot  tests,  TrOC  removal  and  sorption  parameters  can  be  onsistently  fit  to  stable  wastewater  effluent  conditions.  For  TrOCs  compatible  with  sorption  removal,  multiple  log  removals  were  observed  over  1500  empty  bed  volumes  of  operation  with  regenerated  activated  carbon.  Under  more  challenging  conditions  with  5  wt  %  activated  carbon  and  6  wt  %  biochar,  severe  filter  clogging,  and  increased  TrOC  mobility  was  observed  in  SAF-MBR  effluent  without  aerobic  polishing.  Decreases  in  performance  were  manifest  by  a  substantial  increase  in  compound  specific  tortuosity  factors,  implying  kinetic  limitations  to  sorption  rather  than  a  large  decrease  in  sorption  capacity  from  high  organic  carbon  loading.These  results  from  testbed  studies  in  field  conditions  show  the  feasibility  for  nonpotable  water  reuse  of  SAF-MBR  effluent  following  air  stripping  for  methane  recovery,  aerobic  polishing,  regenerated  activated  carbon  filtration,  and  UV  disinfection.  Future  improvements  to  SAF-MBR  retention  and  degradation  of  ultra-fine  organic  matter  are  anticipated  to  further  improve  the  performance  of  regenerated  activated  carbon  filtration.  This  is  concluded  by  modeled  parameters  showing  reduced  kinetic  inhibition  of  TrOCs  loading  onto  carbon  sorbents  during  operation  at  lower  relative  dissolved  organic  carbon.  Increased  flow  rates  may  also  improve  aerobic  filter  performance,  if  a  trickling  filter  is  selected,  as  the  pilot  unit  had  non-ideal  flow  distribution  over  the  packing  media.  Increased  aerobic  degradation  in  the  effluent  prior  to  black  carbon  filtration  would  remove  more  of  the  degradable  subset  of  TrOCs,  and  more  importantly  further  reduce  the  dissolved  organic  carbon  loading  on  the  sorption  media.  With  these  improvements  and  a  nutrient  management  strategy,  the  SAF-MBR  could  be  deployed  to  deliver  irrigation  water  with  lower  energy  and  carbon  footprints  than  current  alternatives.
■590    ▼aSchool  code:  0212.
■650  4▼aAir  flow.
■650  4▼aEnvironmental  science.
■650  4▼aWater  treatment.
■650  4▼aEmissions.
■650  4▼aElectricity  distribution.
■650  4▼aChemical  oxygen  demand.
■650  4▼aDrinking  water.
■650  4▼aBiomass.
■650  4▼aEffluents.
■650  4▼aEnergy  consumption.
■650  4▼aActivated  carbon.
■650  4▼aTechnology.
■650  4▼aClimate  change.
■650  4▼aMembrane  separation.
■650  4▼aSludge.
■650  4▼aRecycling.
■650  4▼aElectricity.
■650  4▼aBiogas.
■650  4▼aSensors.
■650  4▼aAlternative  energy.
■650  4▼aAnalytical  chemistry.
■650  4▼aBiogeochemistry.
■650  4▼aChemistry.
■650  4▼aCivil  engineering.
■650  4▼aEnergy.
■650  4▼aEnvironmental  engineering.
■650  4▼aSustainability.
■690    ▼a0404
■690    ▼a0768
■690    ▼a0363
■690    ▼a0486
■690    ▼a0425
■690    ▼a0485
■690    ▼a0543
■690    ▼a0501
■690    ▼a0791
■690    ▼a0775
■690    ▼a0338
■690    ▼a0640
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-03A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934429▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0027992 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치