본문

서브메뉴

Modeling Aerosol Transport for Stratospheric Solar Geoengineering: From Particle to Plume Scale- [electronic resource]
Modeling Aerosol Transport for Stratospheric Solar Geoengineering: From Particle to Plume Scale- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932333
International Standard Book Number  
9798379613099
Dewey Decimal Classification Number  
628
Main Entry-Personal Name  
Sun, Hongwei.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(108 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Keith, D.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Stratospheric Aerosol Injection (SAI) aims to offset some climate hazards by releasing aerosols into the stratosphere to reflect solar radiation. In this thesis, we outline the use of new modeling methods to simulate aerosol transport in the stratosphere for SAI from particle scale (Lagrangian trajectory model) to plume scale (plume-in-grid model).We use a Lagrangian trajectory model driven by reanalyzed stratospheric winds and modified to include sedimentation to model the transport of each injected particle (from SAI) in the stratosphere and quantify the sensitivity of particle lifetime to injection locations. From the physical perspective, we analyze how background circulations influence particle transport and lifetime in the stratosphere by considering Brewer-Dobson Circulation, Quasi-Biennial Oscillation, tropopause height, poleward winds, etc. From the engineering perspective, we explore various SAI injection strategies to increase particle lifetime in the stratosphere. For example, we find that an optimal choice of injection locations can increase particle lifetime by 44% at 20 km, compared to without choosing injection locations.SAI would almost certainly use aircraft for deployment, and these aircraft would produce line-shaped plumes with strong concentration gradients, which are hard for the global Eulerian model to resolve. To help global Eulerian models resolve subgrid plumes in the stratosphere, a Lagrangian plume model, comprising a Lagrangian trajectory model and an adaptive-grid plume model with a sequence of plume cross-section representations (from a highly resolved 2-D grid to a simplified 1-D grid based on a tradeoff between the accuracy and computational cost), is created and embedded into a global Eulerian model (i.e., GEOS-Chem model) to establish a multiscale Plume-in-Grid (PiG) model. We compare this PiG model (with plume model) to the GEOS-Chem model (without plume model) based on a 1-month simulation of continuous inert tracer emissions by aircraft in the stratosphere in several aspects including trace concentration, trace mixing (entropy), nonlinear processes, and computing efficiency. For example, with the plume model, the final injected tracer is more concentrated and approximately 1/3 of the tracer is at concentrations 2-4 orders of magnitude larger compared to with-out the plume model.
Subject Added Entry-Topical Term  
Environmental science.
Subject Added Entry-Topical Term  
Atmospheric sciences.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Aeronomy.
Index Term-Uncontrolled  
Particle transport
Index Term-Uncontrolled  
Plume-in-grid model
Index Term-Uncontrolled  
Solar geoengineering
Index Term-Uncontrolled  
Stratosphere
Index Term-Uncontrolled  
Lagrangian plume model
Added Entry-Corporate Name  
Harvard University Engineering and Applied Sciences - Engineering Sciences
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642048

MARC

 008240221s2023        ulk                      00        kor
■001000016932333
■00520240214100444
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379613099
■035    ▼a(MiAaPQ)AAI30491583
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a628
■1001  ▼aSun,  Hongwei.▼0(orcid)0000-0002-9993-9987
■24510▼aModeling  Aerosol  Transport  for  Stratospheric  Solar  Geoengineering:  From  Particle  to  Plume  Scale▼h[electronic  resource]
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(108  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Keith,  D.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aStratospheric  Aerosol  Injection  (SAI)  aims  to  offset  some  climate  hazards  by  releasing  aerosols  into  the  stratosphere  to  reflect  solar  radiation.  In  this  thesis,  we  outline  the  use  of  new  modeling  methods  to  simulate  aerosol  transport  in  the  stratosphere  for  SAI  from  particle  scale  (Lagrangian  trajectory  model)  to  plume  scale  (plume-in-grid  model).We  use  a  Lagrangian  trajectory  model  driven  by  reanalyzed  stratospheric  winds  and  modified  to  include  sedimentation  to  model  the  transport  of  each  injected  particle  (from  SAI)  in  the  stratosphere  and  quantify  the  sensitivity  of  particle  lifetime  to  injection  locations.  From  the  physical  perspective,  we  analyze  how  background  circulations  influence  particle  transport  and  lifetime  in  the  stratosphere  by  considering  Brewer-Dobson  Circulation,  Quasi-Biennial  Oscillation,  tropopause  height,  poleward  winds,  etc.  From  the  engineering  perspective,  we  explore  various  SAI  injection  strategies  to  increase  particle  lifetime  in  the  stratosphere.  For  example,  we  find  that  an  optimal  choice  of  injection  locations  can  increase  particle  lifetime  by  44%  at  20  km,  compared  to  without  choosing  injection  locations.SAI  would  almost  certainly  use  aircraft  for  deployment,  and  these  aircraft  would  produce  line-shaped  plumes  with  strong  concentration  gradients,  which  are  hard  for  the  global  Eulerian  model  to  resolve.  To  help  global  Eulerian  models  resolve  subgrid  plumes  in  the  stratosphere,  a  Lagrangian  plume  model,  comprising  a  Lagrangian  trajectory  model  and  an  adaptive-grid  plume  model  with  a  sequence  of  plume  cross-section  representations  (from  a  highly  resolved  2-D  grid  to  a  simplified  1-D  grid  based  on  a  tradeoff  between  the  accuracy  and  computational  cost),  is  created  and  embedded  into  a  global  Eulerian  model  (i.e.,  GEOS-Chem  model)  to  establish  a  multiscale  Plume-in-Grid  (PiG)  model.  We  compare  this  PiG  model  (with  plume  model)  to  the  GEOS-Chem  model  (without  plume  model)  based  on  a  1-month  simulation  of  continuous  inert  tracer  emissions  by  aircraft  in  the  stratosphere  in  several  aspects  including  trace  concentration,  trace  mixing  (entropy),  nonlinear  processes,  and  computing  efficiency.  For  example,  with  the  plume  model,  the  final  injected  tracer  is  more  concentrated  and  approximately  1/3  of  the  tracer  is  at  concentrations  2-4  orders  of  magnitude  larger  compared  to  with-out  the  plume  model.
■590    ▼aSchool  code:  0084.
■650  4▼aEnvironmental  science.
■650  4▼aAtmospheric  sciences.
■650  4▼aApplied  mathematics.
■650  4▼aAeronomy.
■653    ▼aParticle  transport
■653    ▼aPlume-in-grid  model
■653    ▼aSolar  geoengineering
■653    ▼aStratosphere
■653    ▼aLagrangian  plume  model
■690    ▼a0768
■690    ▼a0725
■690    ▼a0367
■690    ▼a0364
■71020▼aHarvard  University▼bEngineering  and  Applied  Sciences  -  Engineering  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932333▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0027966 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치