본문

서브메뉴

Quantitative and Computational Approaches in Translational Biophysics Applications- [electronic resource]
Quantitative and Computational Approaches in Translational Biophysics Applications- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932325
International Standard Book Number  
9798379613020
Dewey Decimal Classification Number  
616
Main Entry-Personal Name  
Greenfield, Daniel A.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(222 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Evans, Conor L.;Wong, Wesley.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Experimental and theoretical biophysical applications intertwine concepts from Computational, Life, Mathematical, and Physical sciences to expand the knowledge base and societal impact of various scientific advances. Interdisciplinary biophysics applications are generally unified by the underlying characteristics of the data they capture. Specifically, data created and collected in such applications have common characteristics of spanning space, time, and biological scales of life, rendering scientists with complex, high-dimensionality data to extract insights and draw conclusions. The harnessing of this data, development of widely applicable analytical tools, and transformation from raw data to tangible information is a challenge well suited for approaches based on statistical principles and advanced machine learning to tackle.This thesis covers the conceptualization, implementation, and application of quantitative approaches to analyzing biophysical data in biomedical contexts. Specifically, these projects span various biological scales and clinical levels, from pre-clinical data from ex-vivo samples and in-vivo animal models, through human patient data analyzed both post-hoc and approaching real-time. A primary focus of this work is the development and application of machine learning toolkits for predictive analysis, from data collection and engineering pipelines through model implementation, training, and analysis, using deep learning and model interpretability approaches to turn multidimensional biophysical data into actionable information. The main takeaway from this body of work is a set of new quantitative methods that outperform existing baselines for unique and novel, yet clinically relevant, biophysical datasets, unified by their translational potential and impact towards therapeutics and/or diagnostics.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Biophysics.
Index Term-Uncontrolled  
Physical sciences
Index Term-Uncontrolled  
Biophysics applications
Index Term-Uncontrolled  
Biophysical data
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Animal models
Added Entry-Corporate Name  
Harvard University Biophysics
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642044

MARC

 008240221s2023        ulk                      00        kor
■001000016932325
■00520240214100443
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379613020
■035    ▼a(MiAaPQ)AAI30491522
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a616
■1001  ▼aGreenfield,  Daniel  A.▼0(orcid)0000-0002-1369-8124
■24510▼aQuantitative  and  Computational  Approaches  in  Translational  Biophysics  Applications▼h[electronic  resource]
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(222  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Evans,  Conor  L.;Wong,  Wesley.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aExperimental  and  theoretical  biophysical  applications  intertwine  concepts  from  Computational,  Life,  Mathematical,  and  Physical  sciences  to  expand  the  knowledge  base  and  societal  impact  of  various  scientific  advances.  Interdisciplinary  biophysics  applications  are  generally  unified  by  the  underlying  characteristics  of  the  data  they  capture.  Specifically,  data  created  and  collected  in  such  applications  have  common  characteristics  of  spanning  space,  time,  and  biological  scales  of  life,  rendering  scientists  with  complex,  high-dimensionality  data  to  extract  insights  and  draw  conclusions.  The  harnessing  of  this  data,  development  of  widely  applicable  analytical  tools,  and  transformation  from  raw  data  to  tangible  information  is  a  challenge  well  suited  for  approaches  based  on  statistical  principles  and  advanced  machine  learning  to  tackle.This  thesis  covers  the  conceptualization,  implementation,  and  application  of  quantitative  approaches  to  analyzing  biophysical  data  in  biomedical  contexts.  Specifically,  these  projects  span  various  biological  scales  and  clinical  levels,  from  pre-clinical  data  from  ex-vivo  samples  and  in-vivo  animal  models,  through  human  patient  data  analyzed  both  post-hoc  and  approaching  real-time.  A  primary  focus  of  this  work  is  the  development  and  application  of  machine  learning  toolkits  for  predictive  analysis,  from  data  collection  and  engineering  pipelines  through  model  implementation,  training,  and  analysis,  using  deep  learning  and  model  interpretability  approaches  to  turn  multidimensional  biophysical  data  into  actionable  information.  The  main  takeaway  from  this  body  of  work  is  a  set  of  new  quantitative  methods  that  outperform  existing  baselines  for  unique  and  novel,  yet  clinically  relevant,  biophysical  datasets,  unified  by  their  translational  potential  and  impact  towards  therapeutics  and/or  diagnostics.
■590    ▼aSchool  code:  0084.
■650  4▼aMedical  imaging.
■650  4▼aApplied  mathematics.
■650  4▼aBiophysics.
■653    ▼aPhysical  sciences
■653    ▼aBiophysics  applications
■653    ▼aBiophysical  data
■653    ▼aMachine  learning
■653    ▼aAnimal  models
■690    ▼a0574
■690    ▼a0364
■690    ▼a0800
■690    ▼a0786
■71020▼aHarvard  University▼bBiophysics.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932325▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0027962 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치