본문

서브메뉴

Optimizing Signal Sampling Strategies for Magnetic Resonance Imaging- [electronic resource]
Optimizing Signal Sampling Strategies for Magnetic Resonance Imaging- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935691
International Standard Book Number  
9798380374026
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Wang, Guanhua.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(128 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Fessler, Jeffrey A.;Noll, Douglas C.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Magnetic resonance imaging (MRI) is an important imaging modality in modern medicine that provides various biomarkers without harmful radiation. However, the low acquisition speed of MRI limits its spatiotemporal resolution, affordability, and patient experience. Efficient data acquisition schemes can enhance the quality and speed of MRI, thereby improving its scientific and clinical values.Designing efficient and optimal sampling schemes is an important yet challenging task due to the scale and complexity of the problem. Current research broadly adopts oversimplified models and heuristics-driven methods, which have effectively sped up MRI, but hinder the design of even more efficient sampling schemes. Therefore, there is a need to explore new methods to automatically design or tailor sampling trajectories.This dissertation presents new methods for optimizing MRI sampling trajectories using optimization-based and data-driven methods. We proposed gradient methods for optimizing non-Cartesian sampling trajectories, as well as Bayesian methods for optimizing Cartesian sampling trajectories. The proposed optimization methods can simultaneously improve image quality, hardware conformity, and patient comfort. Notably, these methods can automatically learn efficient sampling patterns from raw datasets, and the results are tailored to specific anatomical structures, scanning protocols, and hardware. To solve this large-scale, non-convex optimization problem, we introduced several computational methods, such as accurate Jacobian approximations for system matrices, parallel computing, and high-efficiency solvers.We evaluated the proposed methods in multiple MRI applications, such as structural imaging, functional imaging, and dynamic imaging. In both simulation and prospective in-vivo studies, our methods improved image quality by 2-5 dB (in PSNR) and increased acquisition speed by 8-10x. The optimization results also enhanced the patient experience by minimizing uncomfortable peripheral nerve stimulation. Notably, our learning-based approaches exhibited strong generalization ability and robustness to the shift between in-silico training and real-world prospective experiments, which can be explained by simple signal and system theories. These promising preliminary results highlight the potential of our methods to practically accelerate MRI and contribute to advancements in medical imaging research. To promote reproducible research, the accompanying codes, as well as an open-source reconstruction toolbox MIRTorch, are publicly available.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Magnetic resonance imaging
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Data-driven methods
Index Term-Uncontrolled  
Dynamic imaging
Index Term-Uncontrolled  
System matrices
Added Entry-Corporate Name  
University of Michigan Biomedical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:642037

MARC

 008240221s2023        ulk                      00        kor
■001000016935691
■00520240214102006
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380374026
■035    ▼a(MiAaPQ)AAI30748362
■035    ▼a(MiAaPQ)umichrackham005029
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aWang,  Guanhua.
■24510▼aOptimizing  Signal  Sampling  Strategies  for  Magnetic  Resonance  Imaging▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(128  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Fessler,  Jeffrey  A.;Noll,  Douglas  C.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aMagnetic  resonance  imaging  (MRI)  is  an  important  imaging  modality  in  modern  medicine  that  provides  various  biomarkers  without  harmful  radiation.  However,  the  low  acquisition  speed  of  MRI  limits  its  spatiotemporal  resolution,  affordability,  and  patient  experience.  Efficient  data  acquisition  schemes  can  enhance  the  quality  and  speed  of  MRI,  thereby  improving  its  scientific  and  clinical  values.Designing  efficient  and  optimal  sampling  schemes  is  an  important  yet  challenging  task  due  to  the  scale  and  complexity  of  the  problem.  Current  research  broadly  adopts  oversimplified  models  and  heuristics-driven  methods,  which  have  effectively  sped  up  MRI,  but  hinder  the  design  of  even  more  efficient  sampling  schemes.  Therefore,  there  is  a  need  to  explore  new  methods  to  automatically  design  or  tailor  sampling  trajectories.This  dissertation  presents  new  methods  for  optimizing  MRI  sampling  trajectories  using  optimization-based  and  data-driven  methods.  We  proposed  gradient  methods  for  optimizing  non-Cartesian  sampling  trajectories,  as  well  as  Bayesian  methods  for  optimizing  Cartesian  sampling  trajectories.  The  proposed  optimization  methods  can  simultaneously  improve  image  quality,  hardware  conformity,  and  patient  comfort.  Notably,  these  methods  can  automatically  learn  efficient  sampling  patterns  from  raw  datasets,  and  the  results  are  tailored  to  specific  anatomical  structures,  scanning  protocols,  and  hardware.  To  solve  this  large-scale,  non-convex  optimization  problem,  we  introduced  several  computational  methods,  such  as  accurate  Jacobian  approximations  for  system  matrices,  parallel  computing,  and  high-efficiency  solvers.We  evaluated  the  proposed  methods  in  multiple  MRI  applications,  such  as  structural  imaging,  functional  imaging,  and  dynamic  imaging.  In  both  simulation  and  prospective  in-vivo  studies,  our  methods  improved  image  quality  by  2-5  dB  (in  PSNR)  and  increased  acquisition  speed  by  8-10x.  The  optimization  results  also  enhanced  the  patient  experience  by  minimizing  uncomfortable  peripheral  nerve  stimulation.  Notably,  our  learning-based  approaches  exhibited  strong  generalization  ability  and  robustness  to  the  shift  between  in-silico  training  and  real-world  prospective  experiments,  which  can  be  explained  by  simple  signal  and  system  theories.  These  promising  preliminary  results  highlight  the  potential  of  our  methods  to  practically  accelerate  MRI  and  contribute  to  advancements  in  medical  imaging  research.  To  promote  reproducible  research,  the  accompanying  codes,  as  well  as  an  open-source  reconstruction  toolbox  MIRTorch,  are  publicly  available.
■590    ▼aSchool  code:  0127.
■650  4▼aComputer  science.
■650  4▼aMedical  imaging.
■650  4▼aElectrical  engineering.
■653    ▼aMagnetic  resonance  imaging
■653    ▼aMachine  learning
■653    ▼aData-driven  methods
■653    ▼aDynamic  imaging
■653    ▼aSystem  matrices
■690    ▼a0574
■690    ▼a0544
■690    ▼a0984
■71020▼aUniversity  of  Michigan▼bBiomedical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935691▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0027944 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치