본문

서브메뉴

Methods for Integrative Analysis and Prediction Accounting for Subgroup Heterogeneity- [electronic resource]
Methods for Integrative Analysis and Prediction Accounting for Subgroup Heterogeneity- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934980
International Standard Book Number  
9798380391948
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Butts, Jessica L.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Minnesota., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(151 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Eberly, Lynn;Safo, Sandra E.
Dissertation Note  
Thesis (Ph.D.)--University of Minnesota, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Multi-view data, where there are multiple data views (e.g., genomics, proteomics) measured on the same set of participants, have become increasingly available and require integrative analysis methods to fully utilize the available data and better understand complex diseases. At the same time, epidemiologic and genetic studies in many complex diseases suggest subgroup differences (e.g., by sex or race) in disease course and patient outcomes. While there are many existing methods to perform integrative analysis of multi-view data, we are unaware of any integrative analysis methods that also account for subgroup heterogeneity. Instead existing integrative analysis methods would require either (a) concatenating the subgroups which ignores any potential subgroup heterogeneity or (b) running a separate analysis for each subgroup which limits power especially in a high-dimensional data setting. While there are existing methods that account for subgroup heterogeneity, we are unaware of any that can also perform integrative analysis. These methods would require either (a) concatenating data views within each subgroup which fails to model the associations between data views or (b) considering each view separately which fails to fully utilize the multi-view data and requires combining results post hoc. This dissertation begins to fill this gap by proposing the novel statistical approach HIP (Heterogeneity in Integration and Prediction).Chapter 2 introduces HIP, a novel one-step method that (1) accounts for subgroup heterogeneity in multi-view data, (2) ranks variables based on importance, (3) can incorporate covariate adjustment, and (4) has efficient algorithms implemented in Python. The method introduced in this chapter can accommodate one or more continuous outcomes. Simulations show improved variable selection and prediction abilities compared to existing methods. We illustrate HIP using data from the COPDGene Study to identify molecular signatures that are common and specific to males and females and that contribute to the variation in COPD as measured by airway wall thickness.Chapter 3 extends HIP to accommodate multi-class, Poisson, and ZIP outcomes which allows researchers to study other clinically relevant outcomes. Simulations again show improved performance for HIP relative to existing methods in terms of variable selection and prediction abilities. We illustrate this method using data from the COPDGene Study to explore the genes and proteins associated with exacerbation frequency for males and females.One limitation researchers wishing to apply HIP to their data may encounter is that the implementation would require some knowledge of Python programming. Chapter 4 addresses this by introducing an R Shiny Application that provides a graphical user interface to the Python code allowing users to apply HIP to their own data. Users can select different analysis options or use the defaults provided. HIP, with improved accessibility through this R Shiny App, has many potential scientific applications.
Subject Added Entry-Topical Term  
Biostatistics.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Genetics.
Index Term-Uncontrolled  
Integrative analysis methods
Index Term-Uncontrolled  
Prediction abilities
Index Term-Uncontrolled  
Subgroup heterogeneity
Index Term-Uncontrolled  
Heterogeneity in Integration and Prediction
Added Entry-Corporate Name  
University of Minnesota Biostatistics
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641948

MARC

 008240221s2023        ulk                      00        kor
■001000016934980
■00520240214101839
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380391948
■035    ▼a(MiAaPQ)AAI30638008
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aButts,  Jessica  L.
■24510▼aMethods  for  Integrative  Analysis  and  Prediction  Accounting  for  Subgroup  Heterogeneity▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Minnesota.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(151  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Eberly,  Lynn;Safo,  Sandra  E.
■5021  ▼aThesis  (Ph.D.)--University  of  Minnesota,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aMulti-view  data,  where  there  are  multiple  data  views  (e.g.,  genomics,  proteomics)  measured  on  the  same  set  of  participants,  have  become  increasingly  available  and  require  integrative  analysis  methods  to  fully  utilize  the  available  data  and  better  understand  complex  diseases.  At  the  same  time,  epidemiologic  and  genetic  studies  in  many  complex  diseases  suggest  subgroup  differences  (e.g.,  by  sex  or  race)  in  disease  course  and  patient  outcomes.  While  there  are  many  existing  methods  to  perform  integrative  analysis  of  multi-view  data,  we  are  unaware  of  any  integrative  analysis  methods  that  also  account  for  subgroup  heterogeneity.  Instead  existing  integrative  analysis  methods  would  require  either  (a)  concatenating  the  subgroups  which  ignores  any  potential  subgroup  heterogeneity  or  (b)  running  a  separate  analysis  for  each  subgroup  which  limits  power  especially  in  a  high-dimensional  data  setting.  While  there  are  existing  methods  that  account  for  subgroup  heterogeneity,  we  are  unaware  of  any  that  can  also  perform  integrative  analysis.  These  methods  would  require  either  (a)  concatenating  data  views  within  each  subgroup  which  fails  to  model  the  associations  between  data  views  or  (b)  considering  each  view  separately  which  fails  to  fully  utilize  the  multi-view  data  and  requires  combining  results  post  hoc.  This  dissertation  begins  to  fill  this  gap  by  proposing  the  novel  statistical  approach  HIP  (Heterogeneity  in  Integration  and  Prediction).Chapter  2  introduces  HIP,  a  novel  one-step  method  that  (1)  accounts  for  subgroup  heterogeneity  in  multi-view  data,  (2)  ranks  variables  based  on  importance,  (3)  can  incorporate  covariate  adjustment,  and  (4)  has  efficient  algorithms  implemented  in  Python.  The  method  introduced  in  this  chapter  can  accommodate  one  or  more  continuous  outcomes.  Simulations  show  improved  variable  selection  and  prediction  abilities  compared  to  existing  methods.  We  illustrate  HIP  using  data  from  the  COPDGene  Study  to  identify  molecular  signatures  that  are  common  and  specific  to  males  and  females  and  that  contribute  to  the  variation  in  COPD  as  measured  by  airway  wall  thickness.Chapter  3  extends  HIP  to  accommodate  multi-class,  Poisson,  and  ZIP  outcomes  which  allows  researchers  to  study  other  clinically  relevant  outcomes.  Simulations  again  show  improved  performance  for  HIP  relative  to  existing  methods  in  terms  of  variable  selection  and  prediction  abilities.  We  illustrate  this  method  using  data  from  the  COPDGene  Study  to  explore  the  genes  and  proteins  associated  with  exacerbation  frequency  for  males  and  females.One  limitation  researchers  wishing  to  apply  HIP  to  their  data  may  encounter  is  that  the  implementation  would  require  some  knowledge  of  Python  programming.  Chapter  4  addresses  this  by  introducing  an  R  Shiny  Application  that  provides  a  graphical  user  interface  to  the  Python  code  allowing  users  to  apply  HIP  to  their  own  data.  Users  can  select  different  analysis  options  or  use  the  defaults  provided.  HIP,  with  improved  accessibility  through  this  R  Shiny  App,  has  many  potential  scientific  applications.
■590    ▼aSchool  code:  0130.
■650  4▼aBiostatistics.
■650  4▼aStatistics.
■650  4▼aGenetics.
■653    ▼aIntegrative  analysis  methods
■653    ▼aPrediction  abilities
■653    ▼aSubgroup  heterogeneity
■653    ▼aHeterogeneity  in  Integration  and  Prediction
■690    ▼a0308
■690    ▼a0369
■690    ▼a0463
■71020▼aUniversity  of  Minnesota▼bBiostatistics.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0130
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934980▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0027864 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치