본문

서브메뉴

Power Takeoff and Path Geometry Optimization for Marine Hydrokinetic Kites- [electronic resource]
Power Takeoff and Path Geometry Optimization for Marine Hydrokinetic Kites- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932910
International Standard Book Number  
9798379879648
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Abney, Andrew Daniel.
Publication, Distribution, etc. (Imprint  
[S.l.] : North Carolina State University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(125 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Buckner, Gregory;Mazzoleni, Andre;Bryant, Matthew;Husain, Iqbal;Vermillion, Chris.
Dissertation Note  
Thesis (Ph.D.)--North Carolina State University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Over recent decades, there has been a great interest in harnessing ocean current energy resources in order to generate meaningful electricity, both at utility scales, and for applications within the so-called "blue economy", the latter of which entails providing supplemental power to maritime vessels, or to enable persistent autonomous research vessel missions. This work explores the application of marine hydrokinetic (MHK) kites anchored to the seabed as a mechanism for harnessing resources located near the surface in regions where the ocean depth is on the order of kilometers. Reaching these resources from the seabed requires operating an MHK kite on tether lengths which have never been considered in the literature. Resources such as the Gulf Stream off the coast of North Carolina are of particular interest due to the relatively stable flow profile combined with flow velocities frequently exceeding 1 m/s; in fact, this resource serves as a primary motivation for this work. In order to harvest meaningful power however, novel control algorithms that mitigate the trade-offs inherent in operating at the altitudes required to reach the flow resource from the seabed in the region around the Gulf Stream will be required.This dissertation focuses on the developing control methodologies that enable ultralong tethered (ULT) kites to generate power sufficient power levels despite the difficulties of operating on ultra-long tethers. Accurate prediction of system performance is a prerequisite for such optimizations to carry any functional use. To that end, this work first presents a summary of an extensive experimental campaign, which provided the first example of an open-source platform to achieve autonomous control for a MHK kite and provided extensive model validation. Following that, a feasibility study is conducted for ultra-long tether applications, including a characterization of the contribution of tether drag and shear layer effects on the performance of MHK kite systems. This study demonstrates that a well designed path reduces the impact of tether drag on a kite system. This work then develops a novel formulation of the power coefficient of an MHK kite as a function of angle of attack, tether drag coefficient, and turbine rotor angular velocity profile. Finally, an indirect adaptive control law is developed, termed switching economic iterative learning control (se-ILC), which optimizes an objective cost while enabling intelligent navigation of coupled design spaces. This extends previous results in the literature by specifically accounting for parameter coupling in the objective function, which results in improved convergence properties over existing methodologies. Switching economic iterative learning control is then applied to the problem of ULT kites, wherein the coupled design space of path geometry and turbine rotor profile are optimized in order to maximize lap averaged power. In each case tested, se-ILC demonstrated improved economic performance relative to methodologies established in the literature.
Subject Added Entry-Topical Term  
Turbines.
Subject Added Entry-Topical Term  
Control algorithms.
Subject Added Entry-Topical Term  
Ocean currents.
Subject Added Entry-Topical Term  
Flow velocity.
Subject Added Entry-Topical Term  
Energy resources.
Subject Added Entry-Topical Term  
Parameter identification.
Subject Added Entry-Topical Term  
Ground stations.
Subject Added Entry-Topical Term  
Sensors.
Subject Added Entry-Topical Term  
Altitude.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Fluid mechanics.
Subject Added Entry-Topical Term  
Mechanics.
Subject Added Entry-Topical Term  
Physical oceanography.
Subject Added Entry-Topical Term  
Statistics.
Added Entry-Corporate Name  
North Carolina State University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641784

MARC

 008240221s2023        ulk                      00        kor
■001000016932910
■00520240214101139
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379879648
■035    ▼a(MiAaPQ)AAI30516389
■035    ▼a(MiAaPQ)NCState_Univ18402040807
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aAbney,  Andrew  Daniel.
■24510▼aPower  Takeoff  and  Path  Geometry  Optimization  for  Marine  Hydrokinetic  Kites▼h[electronic  resource]
■260    ▼a[S.l.]▼bNorth  Carolina  State  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(125  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Buckner,  Gregory;Mazzoleni,  Andre;Bryant,  Matthew;Husain,  Iqbal;Vermillion,  Chris.
■5021  ▼aThesis  (Ph.D.)--North  Carolina  State  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aOver  recent  decades,  there  has  been  a  great  interest  in  harnessing  ocean  current  energy  resources  in  order  to  generate  meaningful  electricity,  both  at  utility  scales,  and  for  applications  within  the  so-called  "blue  economy",  the  latter  of  which  entails  providing  supplemental  power  to  maritime  vessels,  or  to  enable  persistent  autonomous  research  vessel  missions.  This  work  explores  the  application  of  marine  hydrokinetic  (MHK)  kites  anchored  to  the  seabed  as  a  mechanism  for  harnessing  resources  located  near  the  surface  in  regions  where  the  ocean  depth  is  on  the  order  of  kilometers.  Reaching  these  resources  from  the  seabed  requires  operating  an  MHK  kite  on  tether  lengths  which  have  never  been  considered  in  the  literature.  Resources  such  as  the  Gulf  Stream  off  the  coast  of  North  Carolina  are  of  particular  interest  due  to  the  relatively  stable  flow  profile  combined  with  flow  velocities  frequently  exceeding  1  m/s;  in  fact,  this  resource  serves  as  a  primary  motivation  for  this  work.  In  order  to  harvest  meaningful  power  however,  novel  control  algorithms  that  mitigate  the  trade-offs  inherent  in  operating  at  the  altitudes  required  to  reach  the  flow  resource  from  the  seabed  in  the  region  around  the  Gulf  Stream  will  be  required.This  dissertation  focuses  on  the  developing  control  methodologies  that  enable  ultralong  tethered  (ULT)  kites  to  generate  power  sufficient  power  levels  despite  the  difficulties  of  operating  on  ultra-long  tethers.  Accurate  prediction  of  system  performance  is  a  prerequisite  for  such  optimizations  to  carry  any  functional  use.  To  that  end,  this  work  first  presents  a  summary  of  an  extensive  experimental  campaign,  which  provided  the  first  example  of  an  open-source  platform  to  achieve  autonomous  control  for  a  MHK  kite  and  provided  extensive  model  validation.  Following  that,  a  feasibility  study  is  conducted  for  ultra-long  tether  applications,  including  a  characterization  of  the  contribution  of  tether  drag  and  shear  layer  effects  on  the  performance  of  MHK  kite  systems.  This  study  demonstrates  that  a  well  designed  path  reduces  the  impact  of  tether  drag  on  a  kite  system.  This  work  then  develops  a  novel  formulation  of  the  power  coefficient  of  an  MHK  kite  as  a  function  of  angle  of  attack,  tether  drag  coefficient,  and  turbine  rotor  angular  velocity  profile.  Finally,  an  indirect  adaptive  control  law  is  developed,  termed  switching  economic  iterative  learning  control  (se-ILC),  which  optimizes  an  objective  cost  while  enabling  intelligent  navigation  of  coupled  design  spaces.  This  extends  previous  results  in  the  literature  by  specifically  accounting  for  parameter  coupling  in  the  objective  function,  which  results  in  improved  convergence  properties  over  existing  methodologies.  Switching  economic  iterative  learning  control  is  then  applied  to  the  problem  of  ULT  kites,  wherein  the  coupled  design  space  of  path  geometry  and  turbine  rotor  profile  are  optimized  in  order  to  maximize  lap  averaged  power.  In  each  case  tested,  se-ILC  demonstrated  improved  economic  performance  relative  to  methodologies  established  in  the  literature.
■590    ▼aSchool  code:  0155.
■650  4▼aTurbines.
■650  4▼aControl  algorithms.
■650  4▼aOcean  currents.
■650  4▼aFlow  velocity.
■650  4▼aEnergy  resources.
■650  4▼aParameter  identification.
■650  4▼aGround  stations.
■650  4▼aSensors.
■650  4▼aAltitude.
■650  4▼aAerospace  engineering.
■650  4▼aEnergy.
■650  4▼aFluid  mechanics.
■650  4▼aMechanics.
■650  4▼aPhysical  oceanography.
■650  4▼aStatistics.
■690    ▼a0538
■690    ▼a0791
■690    ▼a0204
■690    ▼a0346
■690    ▼a0415
■690    ▼a0463
■71020▼aNorth  Carolina  State  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0155
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932910▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0027658 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치